- 集合与常用逻辑用语
- 函数与导数
- 函数的定义
- 区间
- 函数的定义域
- 函数的值域
- 函数的解析式
- 相等函数
- 函数的表示方法
- + 分段函数
- 求分段函数解析式及求函数的值
- 分段函数的定义域与值域
- 分段函数的性质及应用
- 已知分段函数的值求参数或自变量
- 映射
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知
,
,
,且
(1)当
时,请写出
的单调递减区间;
(2)当
时,设
对应的自变量取值区间的长度为l(闭区间
的长度定义为
)求l关于a的表达式,并求出l的取值范围.




(1)当


(2)当




已知函数
,无穷数列
的首项
.
(1)如果
,写出数列
的通项公式;
(2)如果
(
且
),要使得数列
是等差数列,求首项
的取值范围;
(3)如果
(
且
),求出数列
的前
项和
.



(1)如果


(2)如果





(3)如果






已知函数
,任取
,若函数
在区间
上的最大值为
,最小值为
,记
.
(1)求函数
的最小正周期及对称轴方程;
(2)当
时,求函数
的解析式;
(3)设函数
,
,其中
为参数,且满足关于
的不等式
有解,若对任意
,存在
,使得
成立,求实数
的取值范围.







(1)求函数

(2)当


(3)设函数








