- 集合与常用逻辑用语
- 函数与导数
- 函数的定义
- 区间
- 函数的定义域
- 函数的值域
- 函数的解析式
- 相等函数
- 函数的表示方法
- + 分段函数
- 求分段函数解析式及求函数的值
- 分段函数的定义域与值域
- 分段函数的性质及应用
- 已知分段函数的值求参数或自变量
- 映射
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设函数
.
为常数且
(1)当
时,求
;
(2)若
满足
,但
,则称
为
的二阶周期点.证明函数
有且仅有两个二阶周期点,并求二阶周期点
;
(3)对于(2)中的
,设
,记
的面积为
,求
在区间
上的最大值和最小值.



(1)当


(2)若







(3)对于(2)中的






定义域为R,且对任意实数
都满足不等式
的所有函数
组成的集合记为M,例如,函数
.
(1)已知函数
,证明:
;
(2)写出一个函数
,使得
,并说明理由;
(3)写出一个函数
,使得数列极限




(1)已知函数



(2)写出一个函数


(3)写出一个函数


