- 集合与常用逻辑用语
- 函数与导数
- + 已知函数类型求解析式
- 已知f(g(x))求解析式
- 求抽象函数的解析式
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某公司试销一种新产品,规定试销时销售单价不低于成本单价500元/件,又不高于800元/件,经试销调查,发现销售量y(件)与销售单价x(元/件),可近似看做一次函数y=kx+b的关系(图象如图所示).
(1)根据图象,求一次函数y=kx+b的表达式;
(2)设公司获得的毛利润(毛利润=销售总价-成本总价)为S元,
①求S关于x的函数表达式;
②求该公司可获得的最大毛利润,并求出此时相应的销售单价.
(1)根据图象,求一次函数y=kx+b的表达式;
(2)设公司获得的毛利润(毛利润=销售总价-成本总价)为S元,
①求S关于x的函数表达式;
②求该公司可获得的最大毛利润,并求出此时相应的销售单价.

设函数
(
且
),当点
是函数
图象上的点时,点
是函数
图象上的点.
(1)写出函数
的解析式;
(2)把
的图象向左平移
个单位得到
的图象,函数
,是否存在实数
,使函数
的定义域为
,值域为
.如果存在,求出
的值;如果不存在,说明理由;
(3)若当
时,恒有
,试确定
的取值范围.







(1)写出函数

(2)把









(3)若当



已知一次函数f(x)在R上单调递增,当x∈[0,3]时,值域为[1,4].
(1)求函数f(x)的解析式;
(2)当x∈[﹣1,8]时,求函数
的值域.
(1)求函数f(x)的解析式;
(2)当x∈[﹣1,8]时,求函数

为了保护一件珍贵文物,博物馆需要在一种无色玻璃的密封保护罩内充入保护气体.假设博物馆需要支付的总费用由两部分组成:①罩内该种气体的体积比保护罩的容积少0.5立方米,且每立方米气体费用1千元;②需支付一定的保险费用,且支付的保险费用与保护罩容积成反比,当容积为2立方米时,支付的保险费用为8千元.
(1)求博物馆支付总费用y与保护罩容积V之间的函数关系式;
(2)求博物馆支付总费用的最小值.
(1)求博物馆支付总费用y与保护罩容积V之间的函数关系式;
(2)求博物馆支付总费用的最小值.