已知函数f(x)=4x2-kx-8在区间(5,20)上既没有最大值也没有最小值,则实数k的取值范围是(  )
A.[160,+∞)
B.(-∞,40]
C.(-∞,40]∪[160,+∞)
D.(-∞,20]∪[80,+∞)
当前题号:1 | 题型:单选题 | 难度:0.99
若函数,则的值为(   )
A.0B.2C.4D.6
当前题号:2 | 题型:单选题 | 难度:0.99
已知函数
(1)若,求的单调区间;
(2)若在区间上是增函数,求实数的取值范围.
当前题号:3 | 题型:解答题 | 难度:0.99
计算下列各式的值.
(1)
(2).
当前题号:4 | 题型:解答题 | 难度:0.99
,则的值为 ( )
A.3B.C.6D.
当前题号:5 | 题型:单选题 | 难度:0.99
某同学大学毕业后,决定利用所学专业进行自主创业,经过市场调查,生产一小型电子产品需投入固定成本2万元,每生产x万件,需另投入流动成本C(x)万元,当年产量小于7万件时,C(x)=x2+2x(万元);当年产量不小于7万件时,C(x)=6x+1nx+﹣17(万元).已知每件产品售价为6元,假若该同学生产的产M当年全部售完.
(1)写出年利润P(x)(万元)关于年产量x(万件)的函数解析式;(注:年利润=年销售收人﹣固定成本﹣流动成本
(2)当年产量约为多少万件时,该同学的这一产品所获年利润最大?最大年利润是多少?(取e3≈20)
当前题号:6 | 题型:解答题 | 难度:0.99
近年来,我国多地区遭遇了雾霾天气,引起口罩热销.某品牌口罩原来每只成本为6元.售价为8元,月销售5万只.
(1)据市场调查,若售价每提高0.5元,月销售量将相应减少0.2万只,要使月总利润不低于原来的月总利润(月总利润月销售总收入月总成本),该口罩每只售价最多为多少元?
(2)为提高月总利润,厂家决定下月进行营销策略改革,计划每只售价元,并投入万元作为营销策略改革费用.据市场调查,每只售价每提高0.5元,月销售量将相应减少万只.则当每只售价为多少时,下月的月总利润最大?并求出下月最大总利润.
当前题号:7 | 题型:解答题 | 难度:0.99
现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥,下部分的形状是正四棱柱(如图所示),并要求正四棱柱的高是正四棱锥的高的4倍.

(1)若则仓库的容积是多少?
(2)若正四棱锥的侧棱长为,则当为多少时,仓库的容积最大?
当前题号:8 | 题型:解答题 | 难度:0.99
(本小题满分14分)
下图(I)是一斜拉桥的航拍图,为了分析大桥的承重情况,研究小组将其抽象成图(II)所示的数学模型.索塔与桥面均垂直,通过测量知两索塔的高度均为60m,桥面上一点到索塔距离之比为,且对两塔顶的视角为
(1)求两索塔之间桥面的长度;
(2)研究表明索塔对桥面上某处的“承重强度”与多种因素有关,可简单抽象为:某索塔对桥面上某处的“承重强度”与索塔的高度成正比(比例系数为正数),且与该处到索塔的距离的平方成反比(比例系数为正数).问两索塔对桥面何处的“承重强度”之和最小?并求出最小值.
当前题号:9 | 题型:解答题 | 难度:0.99
若函数满足,则称函数为“函数”.
(1)试判断是否为“函数”,并说明理由;
(2)函数为“函数”,且当时,,求的解析式,并写出在上的单调递增区间;
(3)在(2)的条件下,当时,关于的方程为常数有解,记该方程所有解的和为,求
当前题号:10 | 题型:解答题 | 难度:0.99