- 集合与常用逻辑用语
- + 根据或且非命题的真假判断原命题的真假
- 根据或且非的真假求参数
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
命题p:对任意x∈R,都有sin x<1;命题q:存在x∈R,使得cos x≤-1.则下列命题是真命题的是( )
A.p且q | B.(¬p)且q |
C.p或(¬q) | D.(¬p)且(¬q) |
设p:a>3或a<1,q:曲线y=x2+(2a-3)x+1与x轴交于不同的两点.如果“p或q”为真命题,“p且q”为假命题,求实数a的取值范围.
已知命题p:∀a∈R,且a>0,a+≥2,命题q:∃x0∈R,sinx0+cosx0=
,则下列判断正确的是( )
A.p是假命题 | B.q是真命题 | C.![]() | D.![]() |
已知命题p:若复数z满足(z-i)(-i)=5,则z=6i;命题q:复数
的虚部为
,则下面为真命题的是( )


A.(┐p)∧(┐q) | B.(┐p)∧q |
C.p∧(┐q) | D.p∧q |
已知命题p:存在x∈(-∞,0),2x<3x,命题q:对任意x∈(0,1),log2x<0,则下列命题为真命题的是( )
A.p且q | B.p或¬q |
C.¬p且q | D.p且¬q |
分别指出由下列各组命题构成的“p或q”“p且q”“¬p”形式,并判断真假.
(1)p:2n-1(n∈Z)是奇数;q:2n-1(n∈Z)是偶数.
(2)p:a2+b2<0;q:a2+b2≥0.
(3)p:集合中的元素是确定的;q:集合中的元素是无序的.
设命题p:函数f(x)=x3-ax-1在区间[-1,1]上单调递减;命题q:函数y=ln(x2+ax+1)的值域是R,如果命题p或q是真命题,p且q为假命题,则实数a的取值范围是
A.(-∞,3] | B.(-∞,-2]∪[2,3) |
C.(2,3] | D.[3,+∞) |