- 集合与常用逻辑用语
- 集合
- 常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
“直线l1、l2互相垂直”是“直线l1、l2的斜率之积等于–1”的( )
A.充分不必要条件 | B.必要不充分条件 |
C.充要条件 | D.既非充分也非必要条件 |
已知抛物线
,
为抛物线
上的点,若直线
经过点
且斜率为
,则称直线
为点
的“特征直线”.设
、
为方程
(
)的两个实根,记
.
(1)求点
的“特征直线”
的方程;
(2)已知点
在抛物线
上,点
的“特征直线”与双曲线
经过二、四象限的渐进线垂直,且与
轴的交于点
,点
为线段
上的点.求证:
;
(3)已知
、
是抛物线
上异于原点的两个不同的点,点
、
的“特征直线”分别为
、
,直线
、
相交于点
,且与
轴分别交于点
、
.求证:点
在线段
上的充要条件为
(其中
为点
的横坐标).













(1)求点


(2)已知点









(3)已知


















设直线系
(
),则下列命题中是真命题的个数是( )
①存在一个圆与所有直线相交;
②存在一个圆与所有直线不相交;
③存在一个圆与所有直线相切;
④
中所有直线均经过一个定点;
⑤不存在定点
不在
中的任一条直线上;
⑥对于任意整数
,存在正
边形,其所有边均在
中的直线上;
⑦
中的直线所能围成的正三角形面积都相等.


①存在一个圆与所有直线相交;
②存在一个圆与所有直线不相交;
③存在一个圆与所有直线相切;
④

⑤不存在定点


⑥对于任意整数



⑦

A.3 | B.4 | C.5 | D.6 |
若给定椭圆
和点
,则称直线
为椭圆C的“伴随直线”.
(1)若
在椭圆C上,判断椭圆C与它的“伴随直线”的位置关系(当直线与椭圆的交点个数为0个、1个、2个时,分别称直线与椭圆相离、相切、相交),并说明理由;
(2)命题:“若点
在椭圆C的外部,则直线
与椭圆C必相交.”写出这个命题的逆命题,判断此逆命题的真假,说明理由;
(3)若
在椭圆C的内部,过N点任意作一条直线,交椭圆C于A、B,交
于M点(异于A、B),设
,问
是否为定值?说明理由.



(1)若

(2)命题:“若点


(3)若



