- 集合与常用逻辑用语
- 集合
- 常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
由无理数引发的数学危机一直延续到19世纪.直到1872年,德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数(史称戴德金分割),并把实数理论建立在严格的科学基础上,才结束了无理数被认为“无理”的时代,也结束了持续2000多年的数学史上的第一次大危机.所谓戴德金分割,是指将有理数集
划分为两个非空的子集
与
,且满足
,
,
中的每一个元素都小于
中的每一个元素,则称
为戴德金分割.试判断,对于任一戴德金分割
,下列选项中,不可能成立的是( )









A.![]() ![]() | B.![]() ![]() |
C.![]() ![]() | D.![]() ![]() |
已知数列
,
满足
(
…).
(1)若
,求
的值;
(2)若
且
,则数列
中第几项最小?请说明理由;
(3)若
(n=1,2,3,…),求证:“数列
为等差数列”的充分必要条件是“数列
为等差数列且
(n=1,2,3,…)”.




(1)若


(2)若



(3)若



