- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形性质理解
- 利用矩形的性质求角度
- 根据矩形的性质与判定求线段长
- 根据矩形的性质与判定求面积
- 利用矩形的性质证明
- 求矩形在平面直角坐标系中的坐标
- + 矩形与折叠问题
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB边上,折痕为AE,再将
以DE为折痕向右折叠,AE与BC交于点F,则
的面积为()




A.4 | B.6 | C.8 | D.10 |
将一张长方形纸片按如图所示的方式折叠,EC,ED为折痕,折叠后点A′,B′,E在同一直线上,则∠CED的度数为( )


A.90° | B.75° | C.60° | D.95° |
如图,在长方形ABCD中,点E是AD的中点,连接CE,将△CDE沿着CE翻折得到△CFE,EF交BC于点G,CF的延长线交AB的延长线于点H,若AH=25,BC=40,则FG=_____.

已知,在矩形纸片ABCD中,AB=5cm,点E、F分别是边AB、CD的中点,折叠矩形纸片ABCD,折痕BM交AD边于点M,在折叠的过程中,如果点A恰好落在线段EF上,那么边AD的长至少是______cm.
如图,矩形纸片ABCD,M为AD边的中点将纸片沿BM、CM折叠,使A点落在A1处,D点落在D1处,若∠1=30°,则∠BMC=( )


A.75° | B.150° | C.120° | D.105° |
如图,在四边形ABCD中,∠BAD=∠B=∠C=90
,AD=BC=20,AB=DC=16.将四边形ABCD沿直线AE折叠,使点D落在BC边上的点F处.

(1)求BF的长;
(2)求CE的长.


(1)求BF的长;
(2)求CE的长.
如图,把长方形纸片ABCD沿对角线折叠,设重叠部分为△EBD,那么下列说法:①
是等腰三角形,
;②折叠后
和
一定相等;③折叠后得到的图形是轴对称图形;④
和
一定是全等三角形.正确的是______(填序号).






