- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 认识多边形
- + 多边形的对角线
- 多边形对角线的条数问题
- 对角线分多边形的三角形个数问题
- 多边形的内角和
- 多边形的外角和
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
探究归纳题:

(1)试验分析:
如图1,经过A点可以做__________条对角线;同样,经过B点可以做__________条;经过C点可以做__________条;经过D点可以做__________条对角线.
通过以上分析和总结,图1共有___________条对角线.
(2)拓展延伸:
运用(1)的分析方法,可得:
图2共有_____________条对角线;
图3共有_____________条对角线;
(3)探索归纳:
对于n边形(n>3),共有_____________条对角线.(用含n的式子表示)
(4)特例验证:
十边形有__________________对角线.

(1)试验分析:
如图1,经过A点可以做__________条对角线;同样,经过B点可以做__________条;经过C点可以做__________条;经过D点可以做__________条对角线.
通过以上分析和总结,图1共有___________条对角线.
(2)拓展延伸:
运用(1)的分析方法,可得:
图2共有_____________条对角线;
图3共有_____________条对角线;
(3)探索归纳:
对于n边形(n>3),共有_____________条对角线.(用含n的式子表示)
(4)特例验证:
十边形有__________________对角线.
我们知道过n边形的一个顶点可以做(n-3)条对角线,这(n-3)条对角线把三角形分割成(n-2)个三角形,想一想这是为什么?如图1.

图1
如图2,在n边形的边上任意取一点,连结这点与各顶点的线段可以把n边形分成几个三角形?

图2
想一想,利用这两个图形,怎样证明多边形的内角和定理.

图1
如图2,在n边形的边上任意取一点,连结这点与各顶点的线段可以把n边形分成几个三角形?

图2
想一想,利用这两个图形,怎样证明多边形的内角和定理.
凸n边形的对角线的条数记作an(n≥4),例如:a4=2,那么:①a5=__________;②a6-a5=__________;③an+1-an=__________(n≥4,用含n的代数式表示).