- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 勾股定理及应用
- + 勾股定理的逆定理
- 判断三边能否构成直角三角形
- 图形上与已知两点构成直角三角形的点
- 在网格中判断直角三角形
- 利用勾股定理的逆定理求解
- 勾股定理逆定理的实际应用
- 勾股定理逆定理的拓展问题
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
分别以下列四组数为一个三角形的边长:(1) 6,8,10; (2) 5,12,13; (3) 8,15,17; (4) 4,5,6,其中能构成直角三角形的有 ( )
A.4组 | B.3组 | C.2组 | D.1组 |
如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,点P从点C开始沿射线CA方向以1cm/s的速度运动;同时,点Q也从点C开始沿射线CB方向以3cm/s的速度运动.
(1)几秒后△PCQ的面积为3cm2?此时PQ的长是多少?(结果用最简二次根式表示)
(2)几秒后以A、B、P、Q为顶点的四边形的面积为22cm2?
(1)几秒后△PCQ的面积为3cm2?此时PQ的长是多少?(结果用最简二次根式表示)
(2)几秒后以A、B、P、Q为顶点的四边形的面积为22cm2?

如图,在小正方形的边长为1的方格纸中,有线段AB和线段CD,点A、B、C、D均在小正方形的顶点上.
(1)在方格纸中画出以AB为斜边的直角三角形ABE,点E在小正方形的顶点上,且△ABE的面积为5;
(2)在方格纸中画出以CD为一边的△CDF,点F在小正方形的顶点上,且△CDF的面积为4,CF与(1)中所画线段BE平行,连接AF,请直接写出线段AF的长.
(1)在方格纸中画出以AB为斜边的直角三角形ABE,点E在小正方形的顶点上,且△ABE的面积为5;
(2)在方格纸中画出以CD为一边的△CDF,点F在小正方形的顶点上,且△CDF的面积为4,CF与(1)中所画线段BE平行,连接AF,请直接写出线段AF的长.

下列命题:
①如果a、b、c为一组勾股数,那么4a、4b、4c仍是勾股数;
②如果直角三角形的两边是3,4,那么斜边必是5;
③如果一个三角形的三边是12,25,21,那么此三角形必是直角三角形;
④一个等腰直角三角形的三边是a、b、c,(a>b=c),那么a2:b2:c2=2:1:1.
其中正确的是( )
①如果a、b、c为一组勾股数,那么4a、4b、4c仍是勾股数;
②如果直角三角形的两边是3,4,那么斜边必是5;
③如果一个三角形的三边是12,25,21,那么此三角形必是直角三角形;
④一个等腰直角三角形的三边是a、b、c,(a>b=c),那么a2:b2:c2=2:1:1.
其中正确的是( )
A.①② | B.①③ | C.①④ | D.②④ |