- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 勾股定理
- + 勾股定理的应用
- 利用勾股定理求梯子滑落高度
- 利用勾股定理求旗杆高度
- 利用勾股定理求小鸟飞行距离
- 利用勾股定理求大树折断前的高度
- 利用勾股定理解决水杯中筷子问题
- 利用勾股定理解决航海问题
- 利用勾股定理求河宽
- 利用勾股定理求台阶上地毯长度
- 利用勾股定理判断汽车是否超速
- 利用勾股定理判断是否受台风影响
- 利用勾股定理选址使到两地距离相等
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
小平所在的学习小组发现,车辆转弯时,能否顺利通过直角弯道的标准是,车辆是否可以行驶到和路的边界夹角是45°的位置(如图1中 ②的位置).例如,图2是某巷子的俯视图,巷子路面宽4m,转弯处为直角,车辆的车身为矩形ABCD,CD与DE、CE的夹角都是45°时,连接EF,交CD于点G,若GF的长度至少能达到车身宽度,即车辆能通过.
(1)小平认为长8m,宽3m的消防车不能通过该直角转弯,请你帮他说明理由;
(2)小平提出将拐弯处改为圆弧(
和
是以O为圆心,分别以OM和ON为半径的弧),长8m,宽3m的消防车就可以通过该弯道了,具体的方案如图3,其中OM⊥OM′,你能帮小平算出,ON至少为多少时,这种消防车可以通过该巷子?
(1)小平认为长8m,宽3m的消防车不能通过该直角转弯,请你帮他说明理由;
(2)小平提出将拐弯处改为圆弧(



如图,两个高度相等且底面直径之比为1:2的圆柱形水杯,甲杯装满液体,乙杯是空杯.若把甲杯中的液体全部倒人乙杯,则乙杯中的液面与图中点P的距离是_________.

如图,5米长的一根木棒AB靠在墙上A点处,落地点为B,已知OB=4米.现设计从O点处拉出一根铁丝来加固该木棒.

(1)请你在图中画出铁丝最短时的情形.
(2)如果落地点B向墙角O处移近2米,则木棒上端A上移是少于2米,还是多于2米?说明理由.
(3)如果从O点处拉出一根铁丝至AB的中点P处来加固木棒,这时铁丝在木棒移动后,需要加长还是剪短?还是不变?请说明理由.

(1)请你在图中画出铁丝最短时的情形.
(2)如果落地点B向墙角O处移近2米,则木棒上端A上移是少于2米,还是多于2米?说明理由.
(3)如果从O点处拉出一根铁丝至AB的中点P处来加固木棒,这时铁丝在木棒移动后,需要加长还是剪短?还是不变?请说明理由.
《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹稍恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为
尺,则可列方程为()

A.![]() | B.![]() | C.![]() | D.![]() |
阅读:能够成为直角三角形三条边长的三个正整数
,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公式为:
其中
,
是互质的奇数.
应用,当
时,求有一边长为5的直角三角形的另外两条边长.




应用,当

如图,在距离铁轨200米处的
处,观察由南宁开往百色的“和谐号”动车,当动车车头在
处时,恰好位于
处的北偏东
方向上,10秒钟后,动车车头到达
处,恰好位于
处西北方向上,则这时段动车的平均速度是()米/秒.








A.![]() | B.![]() | C.200 | D.300 |
如图,一艘船以每小时30海里的速度向北偏东75°方向航行,在点
处测得码头
的船的东北方向,航行40分钟后到达
处,这时码头
恰好在船的正北方向,在船不改变航向的情况下,求出船在航行过程中与码头
的最近距离.(结果精确的0.1海里,参考数据
)







如图,在每个小正方形的边长为1的网格中,点
均在格点上.
(1)
的长等于 ;
(2)在
的内部有一点
,满足
,请在如图所示的网格中,用无刻度的直尺,画出点
,并简要说明点
的位置是如何找到的(不要求证明) .

(1)

(2)在






如图,有两棵树,一棵高11米,另一棵高6米,两树相距12米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行________________ 米.

如图,PQ为圆O的直径,点B在线段PQ的延长线上,OQ=QB=1,动点A在圆O的上半圆运动(含P、Q两点),
(1)当线段AB所在的直线与圆O相切时,求弧AQ的长(图1);
(2)若∠AOB=120°,求AB的长(图2);
(3)如果线段AB与圆O有两个公共点A、M,当AO⊥PM于点N时,求
的值(图3). 
(1)当线段AB所在的直线与圆O相切时,求弧AQ的长(图1);
(2)若∠AOB=120°,求AB的长(图2);
(3)如果线段AB与圆O有两个公共点A、M,当AO⊥PM于点N时,求

