- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 勾股定理
- + 勾股定理的应用
- 利用勾股定理求梯子滑落高度
- 利用勾股定理求旗杆高度
- 利用勾股定理求小鸟飞行距离
- 利用勾股定理求大树折断前的高度
- 利用勾股定理解决水杯中筷子问题
- 利用勾股定理解决航海问题
- 利用勾股定理求河宽
- 利用勾股定理求台阶上地毯长度
- 利用勾股定理判断汽车是否超速
- 利用勾股定理判断是否受台风影响
- 利用勾股定理选址使到两地距离相等
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,一只蚂蚁从正方体的底面A点处沿着表面爬行到点上面的B点处,它爬行的最短路线是( )


A.A⇒P⇒B | B.A⇒Q⇒B | C.A⇒R⇒B | D.A⇒S⇒B |
如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m.如果梯子的顶端下滑1m,那么梯子的底端滑动__________m.

如图△ABC中,∠ACB=90°,BC=6cm,AC=8cm,动点P从A出发,以2cm/s的速度沿AB移动到B,则点P出发_____________ s时,△BCP为等腰三角形.


一艘渔船在A处观测到东北方向有一小岛C,已知小岛C周围4.8海里范围内是水产养殖场.渔船沿北偏东30°方向航行10海里到达B处,在B处测得小岛C在北偏东60°方向,这时渔船改变航线向正东(即BD)方向航行,这艘渔船是否有进入养殖场的危险?

《九章算术》卷九“勾股”中记载:今有户不知高广,竿不知长短.横之不出四尺,纵之不出二尺,斜之适出注.问户斜几何.
(2)求户斜多长.
注释:横放,竿比门宽长出四尺;竖放,竿比门高长出二尺;斜放恰
好能出去.
解决下列问题:
(1)示意图中,线段CE的长为 尺,线段DF的长为 尺;(2)求户斜多长.

一天中国鱼政311号船在执行维权护于鱼任务时.发现在其所处的位置O点的正北方向10海里处的A点,有一走外国鱼船只正以24海里/时的速度向正东方向航行.为迅速实施拦截, 311号船调整好航向,以26海里/时的速度追赶,在不改变行速和航向的前提下.问需要最少几小时才能追上?
如图,圆柱底面直径AB、母线BC均为4cm,动点P从A点出发,沿着圆柱的侧面移动到BC的中点S的最短距离( )


A.(![]() | B.(![]() |
C.(![]() | D.(![]() |