- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 利用勾股定理求梯子滑落高度
- 利用勾股定理求旗杆高度
- 利用勾股定理求小鸟飞行距离
- 利用勾股定理求大树折断前的高度
- 利用勾股定理解决水杯中筷子问题
- 利用勾股定理解决航海问题
- + 利用勾股定理求河宽
- 利用勾股定理求台阶上地毯长度
- 利用勾股定理判断汽车是否超速
- 利用勾股定理判断是否受台风影响
- 利用勾股定理选址使到两地距离相等
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,某人欲从点A处入水横渡一条河,由于水流的影响,他实际上岸的地点C偏离欲到达的地点B200m,结果他在水中实际游了250m,求该河流的宽度为________m.

如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B 300 m,结果他在水中实际游了500 m,则该河流的宽度为_____.

如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达B点200 m,结果他在水中实际游了520 m,则该河流的宽度为( )


A.480 m | B.380 m |
C.580 m | D.500 m |
如图,池塘边有两点A、B,点C是与BA方向成直角的AC方向上一点,测得CB=60 m,AC=20 m,则A,B两点间的距离是( )


A.200 m |
B.20![]() |
C.40![]() |
D.50 m |
有一辆载有集装箱的卡车,高2.5米,宽1.6米,要开进如图所示的上边是半圆,下边是长方形的桥洞,已知半圆的直径为2米,长方形的另一条边长是2.3米.这辆卡车能否通过此桥洞?通过计算说明理由.

苏科版《数学》八年级上册第35页第2题,介绍了应用构造全等三角形的方法测量了池塘两端A、B两点的距离.星期天,爱动脑筋的小刚同学用下面的方法也能够测量出家门前池塘两端A、B两点的距离.他是这样做的:
选定一个点P,连接PA、PB,在PM上取一点C,恰好有PA=14m,PB=13m,PC=5m,BC=12m,他立即确定池塘两端A、B两点的距离为15m.
小刚同学测量的结果正确吗?为什么?
选定一个点P,连接PA、PB,在PM上取一点C,恰好有PA=14m,PB=13m,PC=5m,BC=12m,他立即确定池塘两端A、B两点的距离为15m.
小刚同学测量的结果正确吗?为什么?

如图所示,为修铁路需凿通隧道AC,测得∠C=90°,AB=5km, BC=4km,若每天凿 0.3km,试计算需要几天才能把隧道AC 凿通?

如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达地点B相距50米,结果他在水中实际游的路程比河的宽度多10米,求该河的宽度AB为多少米?
