- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 勾股定理
- + 勾股定理的应用
- 利用勾股定理求梯子滑落高度
- 利用勾股定理求旗杆高度
- 利用勾股定理求小鸟飞行距离
- 利用勾股定理求大树折断前的高度
- 利用勾股定理解决水杯中筷子问题
- 利用勾股定理解决航海问题
- 利用勾股定理求河宽
- 利用勾股定理求台阶上地毯长度
- 利用勾股定理判断汽车是否超速
- 利用勾股定理判断是否受台风影响
- 利用勾股定理选址使到两地距离相等
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
为了庆祝国庆,八年级(1)班的同学做了许多拉花装饰教室,小玲抬来一架2.5米长的梯子,准备将梯子架到2.4米高的墙上,则梯脚与墙角的距离是( )
A.0.6米 | B.0.7米 | C.0.8米 | D.0.9米 |
如图,有一个长方体盒子,长、宽、高分别为6cm、5cm、4cm,有一只小虫要从点A处沿长方体表面爬到点B处,最短的路径长为_________cm.

将一根24㎝的筷子置于底面直径为8㎝,高为15㎝的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为
㎝,则
的取值范围是_____________.



如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,为了吃到蜂蜜,蚂蚁从外壁A处沿着最短路径到达内壁B处。
(1)右图是杯子的侧面展开图,请在杯沿CD上确定一点P,使蚂蚁沿A-P-B路线爬行,距离最短。
(2)结合右图,求出蚂蚁爬行的最短路径长。

(1)右图是杯子的侧面展开图,请在杯沿CD上确定一点P,使蚂蚁沿A-P-B路线爬行,距离最短。
(2)结合右图,求出蚂蚁爬行的最短路径长。


甲、乙两人同时从学校出发,甲往北偏东60°的方向走了3km到家,乙往南偏东30°的方向走了4km到家,甲、乙两家相距___________km
为整治城市街道的汽车超速现象,交警大队在某街道旁进行了流动测速.如图,一辆小汽车在某城市街道上直行,某一时刻刚好行驶到离车速检测仪A处60m的C处,过了4s后,小汽车到达离车速检测仪A处100m的B处.
(1)求BC的长;
(2)已知该段城市街道的限速为70km/h,这辆小汽车超速了吗?请通过计算说明.
(1)求BC的长;
(2)已知该段城市街道的限速为70km/h,这辆小汽车超速了吗?请通过计算说明.
