如图,分别以直角三角形各边为一边向三角形外部作正方形,其中两个小正方形的面积分别为9和25,则正方形A的面积是()


A.16 | B.32 | C.34 | D.64 |
如图,将三角形纸片ABC沿AD折叠,使点C落在BD边上的点E处.若BC=8,BE=2.则AB2﹣AC2的值为( )


A.4 | B.6 | C.10 | D.16 |
已知在平面直角坐标系中,等边△ABC的顶点A、B、C的坐标分别为(a,4)、(b,0)、(c,6),且a<b<c,则等边△ABC的边长为__________.
阅读理解:在平面直角坐标系中,任意两点A(x1,y1),B(x2,y2)之间的位置关系有以下三种情形;
①如果AB∥x轴,则y1=y2,AB=|x1﹣x2|
②如果AB∥y轴,则x1=x2,AB=|y1﹣y2|
③如果AB与x轴、y轴均不平行,如图,过点A作与x轴的平行线与过点B作与y轴的平行线相交于点C,则点C坐标为(x2,y1),由①得AC=|x1﹣x2|;由②得BC=|y1﹣y2|;根据勾股定理可得平面直角坐标系中任意两点的距离公式AB=
.
小试牛刀:
(1)若点A坐标为(﹣2,3),B点坐标为(3,3)则AB= ;
(2)若点A坐标为(3,2),B点坐标为(3,﹣4)则AB= ;
(3)若点A坐标为(3,2),B点坐标为(7,﹣1)则AB= ;
学以致用:
若点A坐标为(2,2),点B坐标为(4,4),点P是x轴上的动点,当AP+PB取得最小值时点P的坐标为 并求出AP+PB最小值= ;
挑战自我:
已知M=
,N=
根据数形结合,直接写出M的最小值= ;N的最大值= ;
①如果AB∥x轴,则y1=y2,AB=|x1﹣x2|
②如果AB∥y轴,则x1=x2,AB=|y1﹣y2|
③如果AB与x轴、y轴均不平行,如图,过点A作与x轴的平行线与过点B作与y轴的平行线相交于点C,则点C坐标为(x2,y1),由①得AC=|x1﹣x2|;由②得BC=|y1﹣y2|;根据勾股定理可得平面直角坐标系中任意两点的距离公式AB=

小试牛刀:
(1)若点A坐标为(﹣2,3),B点坐标为(3,3)则AB= ;
(2)若点A坐标为(3,2),B点坐标为(3,﹣4)则AB= ;
(3)若点A坐标为(3,2),B点坐标为(7,﹣1)则AB= ;
学以致用:
若点A坐标为(2,2),点B坐标为(4,4),点P是x轴上的动点,当AP+PB取得最小值时点P的坐标为 并求出AP+PB最小值= ;
挑战自我:
已知M=



在一个长为8分米,宽为5分米,高为7分米的长方体上,截去一个长为6分米,宽为5分米,深为2分米的长方体后,得到一个如图所示的几何体.一只蚂蚁要从该几何体的顶点A处,沿着几何体的表面到几何体上和A相对的顶点B处吃食物,那么它需要爬行的最短路径的长是________分米.

如图,分别以Rt△ABC为边长向外作等边三角形,若AC=2,∠ACB=90°,∠ABC=30°,则三个等边三角形的面积之和是____.

一艘海监船从
点沿正北方向巡航,其航线距某岛屿(设
、
为该岛屿的东西两端点)最近距离为15海里(即
海里),在
点测得岛屿的西端点
在点
的东北方向,航行4海里后到达
点,测得岛屿的东端点
在点
的北偏东
方向(其中
、
、
在同一条直线上),求该岛屿东西两端点
之间的距离.(精确到0.1海里)参考数据:
,
,
.)



















如图点A,B,C在正方形网格中的格点上,每个小正方形的边长为1,则下列关于△ABC边长的说法,正确的是( )


A.AB,BC长均为有理数,AC长为无理数 |
B.AC长是有理数,AB,BC长均为无理数 |
C.AB长是有理数,4C,BC长均为无理数 |
D.三边长均为无理数 |
在平面直角坐标系中,以A(2,4)为一个顶点画两边长分别为1,3的长方形,使它的两边分别与坐标轴平行,若其中一个顶点到原点的距离为
,写出该顶点的坐标____.
