- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 格点图中画等腰三角形
- 找出图中的等腰三角形
- 根据等角对等边证明等腰三角形
- 根据等角对等边证明边相等
- 根据等角对等边求边长
- 直线上与已知两点组成等腰三角形的点
- + 求与图形中任意两点构成等腰三角形的点
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
在同一平面内,若点P与△ABC三个顶点中的任意两个顶点连接形成的三角形都是等腰三角形,则称点P是△ABC的巧妙点.
(1)如图1,求作△ABC的巧妙点P(尺规作图,不写作法,保留作图痕迹).
(2)如图2,在△ABC中,∠A=80°,AB=AC,求作△ABC的所有巧妙点P (尺规作图,不写作法,保留作图痕迹),并直接写出∠BPC的度数是 .

(3)等边三角形的巧妙点的个数有( )
(1)如图1,求作△ABC的巧妙点P(尺规作图,不写作法,保留作图痕迹).

(2)如图2,在△ABC中,∠A=80°,AB=AC,求作△ABC的所有巧妙点P (尺规作图,不写作法,保留作图痕迹),并直接写出∠BPC的度数是 .

(3)等边三角形的巧妙点的个数有( )
A.2 | B.6 | C.10 | D.12 |
如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A.点B同时出发,沿三角形的边运动,已知点M的速度为2cm/s,点N的速度为3cm/s.当点N第一次到达B点时,M、N同时停止运动.
(1)点M、N运动 秒后,△AMN是等边三角形?
(2)点M、N在BC边上运动时,运动 秒后得到以MN为底边的等腰三角形△AMN?
(3)M、N同时运动几秒后,△AMN是直角三角形?请说明理由.
(1)点M、N运动 秒后,△AMN是等边三角形?
(2)点M、N在BC边上运动时,运动 秒后得到以MN为底边的等腰三角形△AMN?
(3)M、N同时运动几秒后,△AMN是直角三角形?请说明理由.

如图,己知,A(0, 4),B (t,0)分别在y轴,x轴上,连接AB,以AB为直角边分别作等腰Rt△ABD和等腰Rt△ABC.直线BC交y轴于点
点G(-2,3)、H(-2,1)在第二象限内.
(1)当t =-3时,求点D的坐标.
(2)若点G、H位于直线AB的异侧,确定t的取值范围.
(3)①当t取何值时,△ABE与△ACE的面积相等.
②在①的条件下,在x轴上是否存在点P,使△PCB为等腰三角形?若存在,请直接写出点P的坐标;若不存在,说明理由.
A. |

(1)当t =-3时,求点D的坐标.
(2)若点G、H位于直线AB的异侧,确定t的取值范围.
(3)①当t取何值时,△ABE与△ACE的面积相等.
②在①的条件下,在x轴上是否存在点P,使△PCB为等腰三角形?若存在,请直接写出点P的坐标;若不存在,说明理由.
如图,直线
直线
,垂足为点
,点
,
分别在直线
和直线
上,且
,
,点
在直线
上,且
为等腰三角形,则满足条件的点
一共有________________ 个.














如图,在直角坐标系中,点
,点
,若动点
从坐标原点出发,沿
轴正方向匀速运动,运动速度为
,设点
运动时间为
秒,当
是以
为腰的等腰三角形时,直接写出
的所有值__________________.










