如图,已知E为等腰△ABC的底边BC上一动点,过E作EF
BC交AB于点D,交CA的延长线于点F,问:
(1)∠F与∠ADF的关系怎样?说明理由;
(2)若E在BC延长线上,其余条件不变,上题的结论是否成立?若不成立,说明理由;若成立,画出图形并给予证明.

(1)∠F与∠ADF的关系怎样?说明理由;
(2)若E在BC延长线上,其余条件不变,上题的结论是否成立?若不成立,说明理由;若成立,画出图形并给予证明.

定义:在△ABC中,若BC=a,AC=b,AB=c,若a,b,c满足ac+a2=b2,则称这个三角形为“类勾股三角形”,请根据以上定义解决下列问题:

(1)命题“直角三角形都是类勾股三角形”是 命题(填“真”或“假”);
(2)如图1,若等腰三角形ABC是“类勾股三角形”,其中AB=BC,AC>AB,请求∠A的度数;
(3)如图2,在△ABC中,∠B=2∠A,且∠C>∠A.
①当∠A=32°时,你能把这个三角形分成两个等腰三角形吗?若能,请在图2中画出分割线,并标注被分割后的两个等腰三角形的顶角的度数;若不能,请说明理由;
②请证明△ABC为“类勾股三角形”.

(1)命题“直角三角形都是类勾股三角形”是 命题(填“真”或“假”);
(2)如图1,若等腰三角形ABC是“类勾股三角形”,其中AB=BC,AC>AB,请求∠A的度数;
(3)如图2,在△ABC中,∠B=2∠A,且∠C>∠A.
①当∠A=32°时,你能把这个三角形分成两个等腰三角形吗?若能,请在图2中画出分割线,并标注被分割后的两个等腰三角形的顶角的度数;若不能,请说明理由;
②请证明△ABC为“类勾股三角形”.
如图,在Rt△ABC中,∠ACB=90°,∠A=30°,在直线AC上取一点P,使得△PAB为等腰三角形,则符合条件的点P共有( )


A.6个 | B.5个 | C.4个 | D.3个 |
在△ABC中,AB=AC,AD是∠BAC的平分线,交BC于D,BD=3cm,AD=4cm,则△ABC的面积为( )
A.2![]() | B.6![]() | C.12![]() | D.24![]() |