如图,已知△ABC中AB=AC.
(1)作图:在AC上有一点D,延长BD,并在BD的延长线上取点E,使AE=AB,连AE,作∠EAC的平分线AF,AF交DE于点F(用尺规作图,保留作图痕迹,不写作法);
(2)在(1)的条件下,连接CF,求证:∠BAC=∠BFC.
(1)作图:在AC上有一点D,延长BD,并在BD的延长线上取点E,使AE=AB,连AE,作∠EAC的平分线AF,AF交DE于点F(用尺规作图,保留作图痕迹,不写作法);
(2)在(1)的条件下,连接CF,求证:∠BAC=∠BFC.

如图,已知点D在△ABC的边AB上,且AD=CD,

(1)用直尺和圆规作∠BDC的平分线DE,交BC于点E(不写作法,保留作图痕迹);
(2)在(1)的条件下,判断DE与AC的位置关系,并写出证明过程.

(1)用直尺和圆规作∠BDC的平分线DE,交BC于点E(不写作法,保留作图痕迹);
(2)在(1)的条件下,判断DE与AC的位置关系,并写出证明过程.
如图,△ABC中,AB=AC,小聪同学利用直尺和圆规完成了如下操作:

①作∠BAC的平分线AM交BC于点D;
②作边AB的垂直平分线EF,EF与AM相交于点P;
③连接PB,P

①作∠BAC的平分线AM交BC于点D;
②作边AB的垂直平分线EF,EF与AM相交于点P;
③连接PB,P
A. 请你观察图形解答下列问题: (1)线段PA,PB,PC之间的数量关系是 ; (2)若∠ABC=70°,求∠BPC的度数. |
为实施农村医疗卫生改革,计划在甲村、乙村之间建一座定点医疗站P,甲、乙两村坐落在两相交公路内,如图所示.医疗站位置必须满足下列条件:
(1)使其到两条公路距离相等;
(2)到甲、乙两村的距离也相等.请你通过作图确定点P的位置.(要求尺规作图,保留痕迹,不写作法,用黑色水性笔把痕迹再描清楚)
(1)使其到两条公路距离相等;
(2)到甲、乙两村的距离也相等.请你通过作图确定点P的位置.(要求尺规作图,保留痕迹,不写作法,用黑色水性笔把痕迹再描清楚)

.如图,在 Rt△ABC中,∠B=90°,以点 A 为圆心,适当长为半径画弧,分别交AB、AC 于点 D,E,再分别以点 D、E 为圆心,大于
DE 为半径画弧,两弧交于点F,作射线AF交边BC于点G,若 BG=1,AC=4,则△ACG 的面积是________ .


已知:如图,线段AB和射线BM交于点
A.![]() (1)利用尺规完成以下作图,并保留作图痕迹(不写做法) ①在射线BM上作一点C,使AC=AB,连接AC ②作∠ABM的角平分线交AC于点D ③在射线CM上作一点E,使CE=CD,连接DE (2)在(1)中所作的图形中,通过观察和测量可以发现BD=DE,请将下面的证明过程补充完整证明:∵AC=AB, ∴∠ =∠ ∵BD平分∠ABM, ∴∠DBE=﹣ ![]() ∵CE=CD ∴∠CDE=∠CED ∴∠ACB=∠CDE+∠CED, ∴∠CED= ![]() ∴∠DBE=∠CED, ∴BD=DE,( ). |
(1)阅读理解:
我们知道,只用直尺和圆规不能解决的三个经典的希腊问题之一是三等分任意角,但是这个任务可以借助如图所示的一边上有刻度的勾尺完成,勾尺的直角顶点为P,“宽臂”的宽度=PQ= QR = RS,(这个条件很重要哦!)勾尺的一边 MN 满足M, N, Q三点共线(所以PQ ⊥ MN).
下面以三等分∠ABC为例说明利用勾尺三等分锐角的过程:
第一步:画直线DE使DE //BC,且这两条平行线的距离等于PQ;
第二步:移动勾尺到合适位置,使其顶点P落在DE上,使勾尺的MN边经过点B,同时让点R落在∠ABC的BA边上;
第三步:标记此时点Q和点P所在位置,作射线BQ和射线BP:
请完成第三步操作,图中∠ABC的三等分线是射线 、 .
(2)在(1)的条件下补全三等分∠ABC的主要证明过程:
∵ ,BQ ⊥ PR,
∴BP= BR.(线段垂直平分线上的点与这条线段两个端点的距离相等)
∴∠RBQ=∠PBQ,
∵PT⊥BC,PQ⊥BQ,PT=PQ,
∴∠ = ∠ . (角的内部到角的两边距离相等的点在角的平分线上)
∴∠ = = ∠ = ∠
(3)在(1)的条件下探究:
∠ABS=
∠ABC是否成立?如果成立,请说明理由;如果不成立,请在下图中∠ABC外部画出∠ABV =
∠ABC(无需写画法,保留画图痕迹即可)
我们知道,只用直尺和圆规不能解决的三个经典的希腊问题之一是三等分任意角,但是这个任务可以借助如图所示的一边上有刻度的勾尺完成,勾尺的直角顶点为P,“宽臂”的宽度=PQ= QR = RS,(这个条件很重要哦!)勾尺的一边 MN 满足M, N, Q三点共线(所以PQ ⊥ MN).
下面以三等分∠ABC为例说明利用勾尺三等分锐角的过程:
第一步:画直线DE使DE //BC,且这两条平行线的距离等于PQ;
第二步:移动勾尺到合适位置,使其顶点P落在DE上,使勾尺的MN边经过点B,同时让点R落在∠ABC的BA边上;
第三步:标记此时点Q和点P所在位置,作射线BQ和射线BP:
请完成第三步操作,图中∠ABC的三等分线是射线 、 .
(2)在(1)的条件下补全三等分∠ABC的主要证明过程:
∵ ,BQ ⊥ PR,
∴BP= BR.(线段垂直平分线上的点与这条线段两个端点的距离相等)
∴∠RBQ=∠PBQ,
∵PT⊥BC,PQ⊥BQ,PT=PQ,
∴∠ = ∠ . (角的内部到角的两边距离相等的点在角的平分线上)
∴∠ = = ∠ = ∠
(3)在(1)的条件下探究:
∠ABS=



如图,已知
.

(1)用直尺和圆规作射线
平分
;(保留作图痕迹,不写作法)
(2)求证:角平分线上的点到角两边的距离相等. (要求:在第(1)小题作图的基础上,画出证明所需的图形,写出已知、求证和证明过程)


(1)用直尺和圆规作射线


(2)求证:角平分线上的点到角两边的距离相等. (要求:在第(1)小题作图的基础上,画出证明所需的图形,写出已知、求证和证明过程)