在数学活动课上,老师提出这样一个问题:“已知
,同学们只用一块三角板可以画出它的角平分线吗?”聪明的小阳经过思考设计了如下方案(如图):
(1)在角的两边OM、ON上分别取OA=OB;
(2)过点A作DA⊥OM于点A,交ON于点D;过点B作EB⊥ON于点B,交OM于点E,AD、BE交于点C;
(3)作射线OC.
小阳接着解释说:“此时,△OAC≌△OBC,所以射线OC为∠MON的平分线。”小阳的方案中,△OAC≌△OBC的依据是( )


(1)在角的两边OM、ON上分别取OA=OB;
(2)过点A作DA⊥OM于点A,交ON于点D;过点B作EB⊥ON于点B,交OM于点E,AD、BE交于点C;
(3)作射线OC.
小阳接着解释说:“此时,△OAC≌△OBC,所以射线OC为∠MON的平分线。”小阳的方案中,△OAC≌△OBC的依据是( )

A.SAS | B.ASA C.HL | C.AAS |
(1)操作发现如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,且点G在矩形ABCD内部.小明将BG延长交DC于点F,认为GF=DF,你同意吗?说明理由.

(2)问题解决(设DF=x,AD=y.)
保持(1)中的条件不变,若DC=2DF,求
的值;
(3)类比探求
保持(1)中条件不变,若DC=nDF,求
的值.

(2)问题解决(设DF=x,AD=y.)
保持(1)中的条件不变,若DC=2DF,求

(3)类比探求
保持(1)中条件不变,若DC=nDF,求

如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF.
(1)求证:AD平分∠BAC.
(2)写出AB+AC与AE之间的等量关系,并说明理由.
(1)求证:AD平分∠BAC.
(2)写出AB+AC与AE之间的等量关系,并说明理由.

在△ABC中,AD平分∠BAC交BC于D,∠MDN的两边分别与AB,AC相交于M,N两点,且DM=DN.
(1)如图甲,若∠C=90°,∠BAC=60°,AC=9,∠MDN=120°,ND∥AB.
①写出∠MDA= °,AB的长是 .
②求四边形AMDN的周长;

(2)如图乙,过D作DF⊥AC于F,先补全图乙再证明AM+AN=2AF.
(1)如图甲,若∠C=90°,∠BAC=60°,AC=9,∠MDN=120°,ND∥AB.
①写出∠MDA= °,AB的长是 .
②求四边形AMDN的周长;

(2)如图乙,过D作DF⊥AC于F,先补全图乙再证明AM+AN=2AF.

在△ABC中,AB>BC,直线l垂直平分AC.

(1)如图1,作∠ABC的平分线交直线l于点D,连接AD,CD.
①补全图形;
②判断∠BAD和∠BCD的数量关系,并证明.
(2)如图2,直线l与△ABC的外角∠ABE的平分线交于点D,连接AD,CD.求证:∠BAD=∠BCD.

(1)如图1,作∠ABC的平分线交直线l于点D,连接AD,CD.
①补全图形;
②判断∠BAD和∠BCD的数量关系,并证明.
(2)如图2,直线l与△ABC的外角∠ABE的平分线交于点D,连接AD,CD.求证:∠BAD=∠BCD.