刷题首页
题库
初中数学
题干
在△
ABC
中,
AD
平分∠
BAC
交
BC
于
D
,∠
MDN
的两边分别与
AB
,
AC
相交于
M
,
N
两点,且
DM
=
DN
.
(1)如图甲,若∠
C
=90°,∠
BAC
=60°,
AC
=9,∠
MDN
=120°,
ND
∥
AB
.
①写出∠
MDA
=
°,
AB
的长是
.
②求四边形
AMDN
的周长;
(2)如图乙,过
D
作
DF
⊥
AC
于
F
,先补全图乙再证明
AM
+
AN
=2
AF
.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-30 05:09:43
答案(点此获取答案解析)
同类题1
如图所示,已知,点A、F、E、C在同一条直线上,AE=CF,DF⊥AC,BE⊥AC,垂足分别为F、E两点,且AD=C
A.
求证:AD//BC
同类题2
如图,AC=BC,AE=CD,AE⊥CE于点E,BD⊥CD于点D,AE=7,BD=2,则DE的长是______.
同类题3
如图,BD、CE分别是△ABC的边AC和边AB上的高,如果BD=CE,试证明BE=CD.
同类题4
如图,△ABC中,AD⊥BC于点D,AD=DC,点F在AD上,AB=FC,BF的延长线交AC于点E.
(1)求证:△ABD≌△CFD.
(2)求证:CF⊥AB.
同类题5
如图,锐角三角形
ABC
的两条高线
BE
、
CD
相交于点
O
,
BE
=
CD
.
(1)求证:
BD
=
CE
;
(2)判断点
O
是否在∠
BAC
的平分线上,并说明理由.
相关知识点
图形的性质
三角形
全等三角形
三角形全等的判定
HL
全等的性质和HL综合