- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 三角形基础
- + 全等三角形
- 全等三角形的概念及性质
- 三角形全等的判定
- 角平分线的性质与判定
- 线段垂直平分线
- 等腰三角形
- 勾股定理
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
(操作)BD是矩形ABCD的对角线,
,
,将
绕着点B顺时针旋转
(
)得到
,点A、D的对应点分别为E、

(1)求证:
;
(2)CG的长为________.






A.若点E落在BD上,如图①,则![]() (探究)当点E落在线段DF上时,CD与BE交于点 | B.其它条件不变,如图②. |

(1)求证:

(2)CG的长为________.
已知在四边形
中,
,
,点
,
分别在射线
,
上,满足
.
(1)如图1,若点
,
分别在线段
,
上,求证:
;
(2)如图2,若点
,
分别在线段
延长线与
延长线上,请直接写出
与
的数量关系.








(1)如图1,若点





(2)如图2,若点







如图,平行四边形ABCD的对角线AC、BD交于点O,分别过点C、D作CF∥BD,DF∥AC,连接BF交AC于点E.
(1)求证:△FCE≌△BOE;
(2)当△ADC满足什么条件时,四边形OCFD为菱形?请说明理由.
(1)求证:△FCE≌△BOE;
(2)当△ADC满足什么条件时,四边形OCFD为菱形?请说明理由.

如图,点E,F分别是正方形ABCD内部、外部的点,四边形ADFE与四边形BCFE均为菱形,连接AF,BF,有如下四个结论:①
;②
;③EF垂直平分DC;④
;其中正确的是( )





A.①②④ | B.①②③ | C.①③④ | D.①③ |
如图,正方形ABCD(四边相等、四内角相等)中,AD=5,点E、F是正方形ABCD内的两点,且AE=FC=4,BE=DF=3,则EF的平方为( )


A.2 | B.![]() | C.3 | D.4 |
如图,在△ABC中,AD是高,CE是中线,DG垂直平分CE,连接DE.
(1)求证:DC=BE;
(2)若∠AEC=72°,求∠BCE的度数.
(1)求证:DC=BE;
(2)若∠AEC=72°,求∠BCE的度数.

问题背景:
(1)如图:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是B

实际应用
(2)如图,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,且两舰艇到指挥中心的距离相等接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进,1.2小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处.且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离是 海里(直接写出答案)
(1)如图:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是B
A.CD上的点且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE连结AG,先证明△ABE≌△ADG.再证明____≌____,可得出结论,他的结论应是____.请你按照小王同学的思路写出完整的证明过程. |

实际应用
(2)如图,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,且两舰艇到指挥中心的距离相等接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进,1.2小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处.且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离是 海里(直接写出答案)

如图,A,B,D三点在同一直线上,△ABC≌△BDE,其中点A,B,C的对应点分别是B,D,E,连接CE.求证:四边形ABEC是平行四边形.
