- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 三角形基础
- + 全等三角形
- 全等三角形的概念及性质
- 三角形全等的判定
- 角平分线的性质与判定
- 线段垂直平分线
- 等腰三角形
- 勾股定理
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
我们知道:有两条边相等的三角形叫做等腰三角形.类似地,我们定义:至少有一组对边相等的四边形叫做等对边四边形.
(1)请写出一个你学过的特殊四边形中是等对边四边形的图形的名称;
(2)如图,在
中,点
分别在
上,设
相交于点
,若
,
.请你写出图中一个与
相等的角,并猜想图中哪个四边形是等对边四边形;

(3)在
中,如果
是不等于
的锐角,点
分别在
上,且
.探究:满足上述条件的图形中是否存在等对边四边形,并证明你的结论.
(1)请写出一个你学过的特殊四边形中是等对边四边形的图形的名称;
(2)如图,在









(3)在






如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,且AF=DC,连接C

A. (1)求证:D是BC的中点; (2)若∠BAC=90°,求证:四边形ADCF是菱形. |

如图,四边形ABCD为矩形,点E是边BC的中点,AF∥ED,AE∥DF

(1)求证:四边形AEDF为菱形;
(2)试探究:当AB:BC= ,菱形AEDF为正方形?请说明理由.

(1)求证:四边形AEDF为菱形;
(2)试探究:当AB:BC= ,菱形AEDF为正方形?请说明理由.
如图,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若点P从点A出发,以每秒4cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).

(1)若点P在AC上,且满足△BCP的周长为14cm,求此时t的值;
(2)若点P在∠BAC的平分线上,求此时t的值;
(3)在运动过程中,直接写出当t为何值时,△BCP为等腰三角形.

(1)若点P在AC上,且满足△BCP的周长为14cm,求此时t的值;
(2)若点P在∠BAC的平分线上,求此时t的值;
(3)在运动过程中,直接写出当t为何值时,△BCP为等腰三角形.
如图,已知△ABC,
(1)尺规作图:作AD平分∠BAC交BC于D点,再作AD的垂直平分线交AB于E点,交AC于F点(保留作图痕迹,不写作法);
(2)连接DE,DF证明:四边形AEDF是菱形;
(3)若BE=7,AF=4,CD=3,求BD的长.
(1)尺规作图:作AD平分∠BAC交BC于D点,再作AD的垂直平分线交AB于E点,交AC于F点(保留作图痕迹,不写作法);
(2)连接DE,DF证明:四边形AEDF是菱形;
(3)若BE=7,AF=4,CD=3,求BD的长.

如图,AC是平行四边形ABCD的对角线.
(1)利用尺规作出AC的垂直平分线(要求保留作图痕迹,不写作法);
(2)设AC的垂直平分线分别与AB,AC,CD交于点E,O,F,求证:以A、E、C、F为顶点的四边形为菱形.
(1)利用尺规作出AC的垂直平分线(要求保留作图痕迹,不写作法);
(2)设AC的垂直平分线分别与AB,AC,CD交于点E,O,F,求证:以A、E、C、F为顶点的四边形为菱形.

我们定义:如图1、图2、图3,在
中,把
绕点
顺时针旋转
得到
,把
绕点
逆时针旋转
得到
,连接
,当
时,我们称
是
的“旋补三角形”,
边
上的中线
叫做
的“旋补中线”,点
叫做“旋补中心”.图1、图2、图3中的
均是
的“旋补三角形”.

(1)①如图2,当
为等边三角形时,“旋补中线”
与
的数量关系为:
______
;
②如图3,当
,
时,则“旋补中线”
长为______.
(2)在图1中,当
为任意三角形时,猜想“旋补中线”
与
的数量关系,并给予证明.





















(1)①如图2,当





②如图3,当



(2)在图1中,当


