- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 三角形内角和定理的证明
- 与平行线有关的三角形内角和问题
- 与角平分线有关的三角形内角和问题
- + 三角形折叠中的角度问题
- 三角形内角和定理的应用
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在△ABC中,∠C=36°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1﹣∠2的度数是( )


A.36° | B.72° | C.50° | D.46° |
如图,在△ABC中,点D是BC边上的一点,∠B=48°,∠BAD=28°,将△ABD沿AD折叠得到△AED,AE与BC交于点F,则∠AFC=_______________°.

如图,将△ABC沿AD所在直线翻折,点B落在AC边上的点E,∠C=25°,AB+BD=AC,那么∠AED等于( )


A.80° | B.65° | C.50° | D.35° |
(问题探究)小敏在学习了Rt△ABC的性质定理后,继续进行研究.

(1)(i)她发现图①中,如果∠A=30°,BC与AB存在特殊的数量关系是 ;
(ii)她将△ABC沿AC所在的直线翻折得△AHC,如图②,此时她证明了BC和AB的关系;请根据小敏证明的思路,补全探究的证明过程;
猜想:如果∠A=30°,BC与AB存在特殊的数量关系是 ;
证明:△ABC沿AC所在的直线翻折得△AHC,
(2)如图③,点E、F分别在四边形ABCD的边BC、CD上,且∠B=∠D=90°,连接AE、AF、EF,将△ABE、△ADF折叠,折叠后的图形恰好能拼成与△AEF完全重合的三角形,连接AC,若∠EAF=30°,AB2=27,则△CEF的周长为 .

(1)(i)她发现图①中,如果∠A=30°,BC与AB存在特殊的数量关系是 ;
(ii)她将△ABC沿AC所在的直线翻折得△AHC,如图②,此时她证明了BC和AB的关系;请根据小敏证明的思路,补全探究的证明过程;
猜想:如果∠A=30°,BC与AB存在特殊的数量关系是 ;
证明:△ABC沿AC所在的直线翻折得△AHC,
(2)如图③,点E、F分别在四边形ABCD的边BC、CD上,且∠B=∠D=90°,连接AE、AF、EF,将△ABE、△ADF折叠,折叠后的图形恰好能拼成与△AEF完全重合的三角形,连接AC,若∠EAF=30°,AB2=27,则△CEF的周长为 .
在△ABC 中,∠ACB=90º,D、E 分别在 AC、AB 边上,把△ADE 沿 DE 翻折得到△FDE,点 F 恰好落在 BC 边上,若△CFD 与△BFE 都是等腰三角形,则∠BAC 的度数为_________.
如图的三角形纸片中,BC=a,AC=b,AB=c,沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折为BD,则△AED的周长为( )


A.﹣a+b+c | B.a+b﹣c | C.a﹣b+c | D.a+b+c |
如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC 外的A´处,折痕为DE,如果∠A=α,∠CEA´=β,∠BDA´=γ,那么下列式子中正确的是( )


A.γ=2α+β | B.γ=α+2β | C.γ=α+β | D.γ=180°-α-β |
如图,△ABC中,∠A=70°,∠B=50°,点M,N分别是BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B'落在AC上.若△MB'C为直角三角形,则∠MNB'的度数为_____.
