- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 三角形内角和定理的证明
- 与平行线有关的三角形内角和问题
- + 与角平分线有关的三角形内角和问题
- 三角形折叠中的角度问题
- 三角形内角和定理的应用
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图①,在△ABC中,CD、CE分别是△ABC的高和角平分线,∠BAC=α,∠B=β(α>β).

(1)若α=70°,β=40°,求∠DCE的度数;
(2)试用α、β的代数式表示∠DCE的度数(直接写出结果);
(3)如图②,若CE是△ABC外角∠ACF的平分线,交BA延长线于点E,且α﹣β=30°,求∠DCE的度数.

(1)若α=70°,β=40°,求∠DCE的度数;
(2)试用α、β的代数式表示∠DCE的度数(直接写出结果);
(3)如图②,若CE是△ABC外角∠ACF的平分线,交BA延长线于点E,且α﹣β=30°,求∠DCE的度数.
如图,BE、CD相交于A点,∠DCB与∠DEB的平分线相交于点

(1)试探求∠F与∠B、∠D的数量关系.
(2)当∠B:∠D:∠F=2:4:x时,求x.
A. |

(1)试探求∠F与∠B、∠D的数量关系.
(2)当∠B:∠D:∠F=2:4:x时,求x.
如图,△ABC中,∠A=25°,∠B=65°,CD为∠ACB的平分线,CE⊥AB于点E,则∠ECD的度数是( )


A.25° | B.20° | C.30° | D.15° |
如图所示,在△ABC中,AE、BF是角平分线,它们相交于点O,AD是高,∠BAC=80°,∠C=54°,求∠DAC、∠BOA的度数.

如图,点P在AC上,点Q在AB上,BE平分∠ABP,交AC于E,CF平分∠ACQ,交AB于F,BE、CF相交于G,CQ、BP相交于D,若∠BDC=140°,∠BGC=110°,则∠A的度数为_______

如图,在△ABC中,点D是∠ABC和∠ACB的角平分线的交点,∠A=80°,∠ABD=30°,则∠DCB为( )


A.25° | B.20° | C.15° | D.10° |