- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 几何图形初步
- 相交线与平行线
- + 三角形
- 三角形基础
- 全等三角形
- 等腰三角形
- 勾股定理
- 四边形
- 圆
- 命题与证明
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,AD是△ABC的边BC上的中线,BE是△ABD的边AD上的中线,若△ABC的面积是16,则△ABE的面积是( )


A.16 | B.8 | C.4 | D.2 |
如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,下列结论:①CD=ED;②AC+BE=AB;③∠BDE=∠BAC;④BE=DE;⑤SBDE:S△ACD=BD:AC,其中正确的个数()


A.5个 | B.4个 | C.3个 | D.2个 |
(1)(问题情境)小明遇到这样一个问题:
如图①,已知
是等边三角形,点
为
边上中点,
,
交等边三角形外角平分线
所在的直线于点
,试探究
与
的数量关系.
小明发现:过
作
,交
于
,构造全等三角形,经推理论证问题得到解决.请直接写出
与
的数量关系,并说明理由.
(2)(类比探究)
如图②,当
是线段
上(除
外)任意一点时(其他条件不变)试猜想
与
的数量关系并证明你的结论.
(3)(拓展应用)
当
是线段
上延长线上,且满足
(其他条件不变)时,请判断
的形状,并说明理由.
如图①,已知









小明发现:过






(2)(类比探究)
如图②,当





(3)(拓展应用)
当





王强同学用10块高度都是
的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(
),点
在
上,点
和
分别与木墙的顶端重合.
(1)求证:
;
(2)求两堵木墙之间的距离.






(1)求证:

(2)求两堵木墙之间的距离.
