如图,在△ABC中,已知∠ABC和△ABC的外角∠ACG的平分线交于点F,过点F作FD∥BC,FD分别交AB、AC于点D、E,求证:DE=BD﹣CE.

如图,△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,F为EC的中点,连接AF.写出AF与BD的数量关系和位置关系,并说明理由.

如图,在△ABC中,AB=AC,点D是BC边上的中点,G是AC边上一点,过G作EF⊥BC,交BC于点E,交BA的延长线于点F.

(1)求证:AD∥EF;
(2)求证:△AFG是等腰三角形.

(1)求证:AD∥EF;
(2)求证:△AFG是等腰三角形.
如图,任意△ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC交AB于点D,交AC于点E,那么下列结论:①∠A=2∠BFC﹣180°;②DE﹣BD=CE;③△ADE的周长等于AB与AC的和;④BF>CF.其中正确的有( )


A.① | B.①② | C.①②③ | D.①②③④ |
(1)如图①,在四边形
中,
,点
是
的中点,若
是
的平分线,试判断
,
,
之间的等量关系.
解决此问题可以用如下方法:延长
交
的延长线于点
,易证
得到
,从而把
,
,
转化在一个三角形中即可判断.
,
,
之间的等量关系________;
(2)问题探究:如图②,在四边形
中,
,
与
的延长线交于点
,点
是
的中点,若
是
的平分线,试探究
,
,
之间的等量关系,并证明你的结论.









解决此问题可以用如下方法:延长











(2)问题探究:如图②,在四边形













如图,点O是△ABC角平分线的交点,过点O作MN∥BC分别与AB,AC相交于点M,N,若
,
,
,则△AMN的周长为__________.




如图,在△ABC中,AB=AC,BE平分∠ABC交AC于点E,过点E作EF∥BC交AB于点F,D是BC边上的中点,连结AD.

(1)若∠BAD=55°,求∠C的度数;
(2)猜想FB与FE的数量关系,并证明你的猜想.

(1)若∠BAD=55°,求∠C的度数;
(2)猜想FB与FE的数量关系,并证明你的猜想.