- 数与式
- 方程与不等式
- 函数
- 一次函数的实际应用——分配方案问题
- + 一次函数的实际应用——最大利润问题
- 一次函数的实际应用——行程问题
- 一次函数的实际应用——几何问题
- 一次函数的实际应用——其他问题
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的
型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.
(1)今年
型车每辆售价多少元?(用列方程的方法解答)
(2)该车计划新进一批
型车和新款
型车共60辆,且
型车的进货数量不超过
型车数量的两倍,应如何进货才能使这批车获利最多?
,
两种型号车的进货和销售价格如下表:

(1)今年

(2)该车计划新进一批






| ![]() | ![]() |
进货价格(元) | 1100 | 1400 |
销售价格(元) | 今年的销售价格 | 2000 |
某文具店计划购进
两种计算器
若购进A计算器10个,B计算器5个,需要1000元:若购进A计算器5个,B计算器3个,需要550元.
(1)购进A、B两种计算器每个各需多少元?
(2)该商店决定购进这两种计算器180个,若购进A种计算器的数量不少于B种计算器数量的6倍,且不超过B种计算器数量的8倍,则该商店共有几种进货方案?
(3)若销售每个A计算器可获利润20元,每个B计算器可获利润30元,在(2)的各种进货方案中,哪一种方案获利润较大?最大利润是多少?


(1)购进A、B两种计算器每个各需多少元?
(2)该商店决定购进这两种计算器180个,若购进A种计算器的数量不少于B种计算器数量的6倍,且不超过B种计算器数量的8倍,则该商店共有几种进货方案?
(3)若销售每个A计算器可获利润20元,每个B计算器可获利润30元,在(2)的各种进货方案中,哪一种方案获利润较大?最大利润是多少?
为加大环境保护力度,某市在郊区新建了
、
两个垃圾处理厂来处理甲、乙两个垃圾中转站的垃圾.已知甲中转站每日要输出100吨垃圾,乙中转站每日要输出80吨垃圾,
垃圾处理厂日处理垃圾量为70吨,
垃圾处理厂日处理垃圾量为110吨.甲、乙两中转站运往
、
两处理厂的垃圾量和运费如下表.
(1)设甲中转站运往
垃圾处理厂的垃圾量为
吨,根据信息填表.
(2)设总运费为
元,求总运费
(元)关于
(吨)的函数关系式,并写出
的取值范围.
(3)当甲、乙两中转站各运往
、
两处理厂多少吨垃圾时,总运费最省?最省的总运费是多少?






| 垃圾量(吨) | 运费(元/吨) | ||
甲中转站 | 乙中转站 | 甲中转站 | 乙中转站 | |
![]() | ![]() | ______ | 240 | 180 |
![]() | ______ | ![]() | 250 | 160 |
(1)设甲中转站运往


(2)设总运费为




(3)当甲、乙两中转站各运往


某公司销售智能机器人,售价每台为10万元,进价y与销售量x的函数关系式如图所示。

(1)当x=10时,公司销售机器人的总利润为___万元;
(2)当10⩽x⩽30时,求出y与x的函数关系式;
(3)问:销售量为多少台时,公司销售机器人的总利润为37.5万元。

(1)当x=10时,公司销售机器人的总利润为___万元;
(2)当10⩽x⩽30时,求出y与x的函数关系式;
(3)问:销售量为多少台时,公司销售机器人的总利润为37.5万元。
某商店计划一次购进两种型号的手机共110部,销售一部A型手机比销售一部B型手机获得的利润多50元,销售相同数量的A型手机和B型手机获得的利润分别为3000元和2000元,其中A型手机的进货量不超过B型手机的2倍,且商店最多购进B型手机50台.
(1)求每部A型手机和B型手机的销售利润分别为多少元?
(2)设购进B型手机n部,销售手机的总利润为y元,怎么进货才能使销售总利润最大?
(3)实际进货时,厂家对B型手机出厂价下调m(30<m<70)元.若商店保持两种手机的售价不变,请设计出手机销售总利润最大的进货方案.
(1)求每部A型手机和B型手机的销售利润分别为多少元?
(2)设购进B型手机n部,销售手机的总利润为y元,怎么进货才能使销售总利润最大?
(3)实际进货时,厂家对B型手机出厂价下调m(30<m<70)元.若商店保持两种手机的售价不变,请设计出手机销售总利润最大的进货方案.
某电脑公司准备每周(按120个工时计算)组装三种型号的电脑360台,组装这些电脑每台所需工时和每台产值如下表.
(1)如果每周准备组装100台型号③电脑,那么每周应组装型号①、②电脑各几台?
(2)如果一周产值定为10万元,那么这周应组装型号①、②、③电脑各几台?
(3)若一周型号③电脑至少组装20台,一周产值记为w,试直接写出w的范围.
电脑型号 | ① | ② | ③ |
工时(个) | ![]() | ![]() | ![]() |
产值(万元) | 0.4 | 0.3 | 0.2 |
(1)如果每周准备组装100台型号③电脑,那么每周应组装型号①、②电脑各几台?
(2)如果一周产值定为10万元,那么这周应组装型号①、②、③电脑各几台?
(3)若一周型号③电脑至少组装20台,一周产值记为w,试直接写出w的范围.
某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系,关于销售单价,日销售量的几组对应值如表:(注:日销售利润=日销售量×(销售单价﹣成本单价)
(1)求y关于x的函数解析式和m的值;
(2)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?
销售单价x(元) | 85 | 95 | 105 | 115 |
日销售量y(个) | 175 | 125 | 75 | m |
(1)求y关于x的函数解析式和m的值;
(2)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?
某工艺品店购进A,B两种工艺品,已知这两种工艺品的单价之和为200元,购进2个A种工艺品和3个B种工艺品需花费520元.
(1)求A,B两种工艺品的单价;
(2)该店主欲用9600元用于进货,且最多购进A种工艺品36个,B种工艺品的数量不超过A种工艺品的2倍,则共有几种进货方案?
(3)已知售出一个A种工艺品可获利10元,售出一个B种工艺品可获利18元,该店主决定每售出一个B种工艺品,为希望工程捐款m元,在(2)的条件下,若A,B两种工艺品全部售出后所有方案获利均相同,则m的值是多少?此时店主可获利多少元?
(1)求A,B两种工艺品的单价;
(2)该店主欲用9600元用于进货,且最多购进A种工艺品36个,B种工艺品的数量不超过A种工艺品的2倍,则共有几种进货方案?
(3)已知售出一个A种工艺品可获利10元,售出一个B种工艺品可获利18元,该店主决定每售出一个B种工艺品,为希望工程捐款m元,在(2)的条件下,若A,B两种工艺品全部售出后所有方案获利均相同,则m的值是多少?此时店主可获利多少元?
为落实“精准扶贫”,某村在政府的扶持下建起了蔬菜大棚基地,准备种植A,B两种蔬菜,若种植20亩A种蔬菜和30亩B种蔬菜,共需投入36万元;若种植30亩A种蔬菜和20亩B种蔬菜,共需投入34万元.
(1)种植A,B两种蔬菜,每亩各需投入多少万元?
(2)经测算,种植A种蔬菜每亩可获利0.8万元,种植B种蔬菜每亩可获利1.2万元,村里把100万元扶贫款全部用来种植这两种蔬菜,总获利w万元.设种植A种蔬菜m亩,求w关于m的函数关系式;
(3)在(2)的条件下,若要求A种蔬菜的种植面积不能少于B种蔬菜种植面积的2倍,请你设计出总获利最大的种植方案,并求出最大总获利.
(1)种植A,B两种蔬菜,每亩各需投入多少万元?
(2)经测算,种植A种蔬菜每亩可获利0.8万元,种植B种蔬菜每亩可获利1.2万元,村里把100万元扶贫款全部用来种植这两种蔬菜,总获利w万元.设种植A种蔬菜m亩,求w关于m的函数关系式;
(3)在(2)的条件下,若要求A种蔬菜的种植面积不能少于B种蔬菜种植面积的2倍,请你设计出总获利最大的种植方案,并求出最大总获利.