某校运动会需购买AB两种奖品共100件B两种奖品单价分别为10元、15元设购买A种奖品m件,购买两种奖品的总费用为W元.
写出之间的函数关系式;
若购买两种奖品的总费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,求出自变量m的取值范围,并确定最少费用W的值.
当前题号:1 | 题型:解答题 | 难度:0.99
已知:直线l的解析式为y=2x+3,若先作直线l关于原点的对称直线l1,再作直线l1关于y轴的对称直线l2,最后将直线l2沿y轴向上平移4个单位长度得到直线l3,试求l3的解析式.
当前题号:2 | 题型:解答题 | 难度:0.99
某土产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种圭特产,且必须装满.根据下表提供的信息,解答以下问题:
土特产种类



每辆汽车运载量(吨)
8
6
5
每吨土特产获利(百元)
12
16
10
 
(1)设装运甲种土特产的车辆数为,装运乙种土特产的车辆数为,求之间的函数关系式.
(2)如果装运每辆土特产的车辆都不少于3辆,那么车辆的安排方案有几种?并写出每种安排方案.
(3)若要使此次销售获利最大,应采用(2)中哪种安排方案?并求出最大利润的值.
当前题号:3 | 题型:解答题 | 难度:0.99
如图,将八个边长为1的小正方形摆放在平面直角坐标系中,若过原点的直线将图形分成面积相等的两部分,则直线的函数关系式为______________.
当前题号:4 | 题型:填空题 | 难度:0.99
如图,在平面直角坐标系xOy中,直线l经过点A(-1,-2),C(5,1),交x轴于点
A.

(1)求点B的坐标;
(2)求△OAC的面积.
当前题号:5 | 题型:解答题 | 难度:0.99
如图,已知一次函数y=kx+4图象交直线OA于点A(1,2),交y轴于点B,点C为坐标平面内一点.

(1)求k值;
(2)若以O、A、B、C为顶点的四边形为菱形,则C点坐标为     
(3)在直线AB上找点D,使△OAD的面积与((2)中菱形面积相等,则D点坐标为    .
当前题号:6 | 题型:解答题 | 难度:0.99
某零件制造厂有工人20名,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件的成本为400元,可获利150元,每制造一个乙种零件的成本为500元,可获利260元.在这20名工人中,车间每天安排x名工人制造甲种零件,其余工人制造乙种零件.
(1)写出次厂家每天获利y(元)与x(元)之间的函数关系式;
(2)若该厂家每天最多能投入的成本为49000元,那么该厂家每天最多能获利多少元?
当前题号:7 | 题型:解答题 | 难度:0.99
某医药研究所开发一种新药,如果成人按规定的剂量服用,据监测:服药后每毫升血液中含药量y与时间t之间近似满足如图所示曲线:

(1)分别求出时,y与t之间的函数关系式;
(2)据测定:每毫升血液中含药量不少于4微克时治疗疾病有效,假如某病人一天中第一次服药为7:00,那么服药后几点到几点有效?
当前题号:8 | 题型:解答题 | 难度:0.99
十一黄金周某一天,甲、乙两名学生去距家36千米的风景区游玩,他们从家出发,骑电动车行驶20分钟时发现忘带相机,甲下车步行前往,乙骑电动车按原路返回,乙取到相机后(在家取相机所用时间忽略不计),骑电动车追甲,在距风景区13.5千米处追上甲并同车前往风景区,若电动车速度始终不变.设甲与家相距(千米),乙与家相距(千米),甲离开家的时间为 (分钟),与x之间的函数图象如图所示,结合图象解答下列问题:

(1)求电动车的速度;
(2)求出甲步行的时间是多少分钟?;
(3)求乙返回到家时,甲与家相距多远?
当前题号:9 | 题型:解答题 | 难度:0.99