- 数与式
- 方程与不等式
- 函数
- 平面直角坐标系
- 函数基础知识
- + 一次函数
- 一次函数的图象和性质
- 一次函数与方程、不等式
- 一次函数的实际应用
- 二次函数
- 反比例函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
(8分)某工厂生产一种产品,当生产数量至少为10吨,但不超过50吨时,每吨的成本y(万元/吨)与生产数量x(吨)的函数关系式如图所示.

(1)求y关于x的函数解析式,并写出自变量的取值范围;
(2)当每吨成本为9万元时,求该产品的生产数量.

(1)求y关于x的函数解析式,并写出自变量的取值范围;
(2)当每吨成本为9万元时,求该产品的生产数量.
(本小题满分10分)某班组织学生到百万葵园进行户外学习活动,已知百万葵园的门票销售分两类:一类为散客门票,票价每张120元;另一类为团体门票(一次性购买门票20张以上),每张门票价格在散客门票价格基础上打8折,设本次活动共有
人参加,购买门票需要
元.
如果都买散客票,求y与x之间的函数关系式;
如果买团体票,求y与x之间的函数关系式,并写出自变量的取值范围;
请根据人数变化设计一种比较省钱的购票方案.


如果都买散客票,求y与x之间的函数关系式;
如果买团体票,求y与x之间的函数关系式,并写出自变量的取值范围;
请根据人数变化设计一种比较省钱的购票方案.
(本小题满分8分)某零件制造车间有工人20名,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件,可获利润150元,每制造一个乙种零件可获利润260元,在这20名工人中,车间每天安排x名工人制造甲种零件,其余工人制造乙种零件,且生产乙种零件的个数不超过甲种零件个数的一半.
⑴请写出此车间每天所获利润y(元)与x(人)之间的函数关系式;
⑵求自变量x的取值范围;
⑶怎样安排生产每天获得的利润最大,最大利润是多少?
⑴请写出此车间每天所获利润y(元)与x(人)之间的函数关系式;
⑵求自变量x的取值范围;
⑶怎样安排生产每天获得的利润最大,最大利润是多少?
某商场欲购进果汁饮料和碳酸饮料共50箱,两种饮料每箱的进价和售价如下表所示.设购进果汁饮料x箱(x为正整数),且所购进的两种饮料能全部卖出,获得的总利润为W元(注:总利润=总售价﹣总进价).
(1)设商场购进碳酸饮料y箱,直接写出y与x的函数关系式;
(2)求总利润w关于x的函数关系式;
(3)如果购进两种饮料的总费用不超过2100元,那么该商场如何进货才能获利最多?并求出最大利润.
饮料 果汁饮料 碳酸饮料
进价(元/箱) 51 36
售价(元/箱) 61 43
(1)设商场购进碳酸饮料y箱,直接写出y与x的函数关系式;
(2)求总利润w关于x的函数关系式;
(3)如果购进两种饮料的总费用不超过2100元,那么该商场如何进货才能获利最多?并求出最大利润.
饮料 果汁饮料 碳酸饮料
进价(元/箱) 51 36
售价(元/箱) 61 43
甲、乙两辆汽车分别从A、B两地同时出发,沿同一条公路相向而行.乙车出发2h休息.与甲车相遇.继续行驶.设甲、乙两车与B地的距离y(km)与行驶的时间x(h)之间的函数图象如图所示.

(1)写出甲车与B地的距离y(km)与行驶时间x(h)之间的函数关系式 ;
(2)乙车休息的时间为 ;
(3)写出休息前,乙车与B地的距离y(km)与行驶的时间x(h)之间的函数关系式 ;休息后,乙车与B地的距离y(km)与行驶的时间x(h)之间的函数关系式 ;
(4)求行驶多长时间两车相距100km.

(1)写出甲车与B地的距离y(km)与行驶时间x(h)之间的函数关系式 ;
(2)乙车休息的时间为 ;
(3)写出休息前,乙车与B地的距离y(km)与行驶的时间x(h)之间的函数关系式 ;休息后,乙车与B地的距离y(km)与行驶的时间x(h)之间的函数关系式 ;
(4)求行驶多长时间两车相距100km.
已知,A,B两市相距260千米,甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障,立即通知技术人员乘乙车从A市赶来维修(通知时间忽略不计),乙车到达M地后又经过20分钟修好甲车后以原速原路返回,同时甲车以原速1.5倍的速度前往B市,如图是两车距A市的路程y(千米)与甲车行驶时间x(小时)之间的函数图象,结合图象回答下列问题:
(1)甲车提速后的速度是 千米/时,乙车的速度是 千米/时,点C的坐标为 ;
(2)求乙车返回时y与x的函数关系式并写出自变量x的取值范围;
(3)求甲车到达B市时乙车已返回A市多长时间?
(1)甲车提速后的速度是 千米/时,乙车的速度是 千米/时,点C的坐标为 ;
(2)求乙车返回时y与x的函数关系式并写出自变量x的取值范围;
(3)求甲车到达B市时乙车已返回A市多长时间?

甲、乙两车从A地驶向B地,甲车比乙车早行驶2h,并且在途中休息了0.5h,休息前后速度相同,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.

(1)求出图中a的值;
(2)求出甲车行驶路程y(km)与时间x(h)的函数表达式,并写出相应的x的取值范围;
(3)当甲车行驶多长时间时,两车恰好相距20km.

(1)求出图中a的值;
(2)求出甲车行驶路程y(km)与时间x(h)的函数表达式,并写出相应的x的取值范围;
(3)当甲车行驶多长时间时,两车恰好相距20km.
某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:

(1)设商场购进A型节能台灯为x盏,销售完这批台灯时可获利为y元,求y关于x的函数解析式;
(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?

(1)设商场购进A型节能台灯为x盏,销售完这批台灯时可获利为y元,求y关于x的函数解析式;
(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?
为了能有效地使用电力资源,跃进花园小区实行居民峰谷用电,居民家庭在峰时段(上午8:00—晚上21:00)用电的电价为0.55元/度,谷时段(晚上21:00—次日晨8:00)用电的电价为0.35元/度.
(1)若朱老师家某月用电100度,其中峰时段用电
度,这个月应缴纳电费 度;当朱老师家峰时段用电60度时,求应缴纳电费.
(2)朱老师生活节俭,每天早晨5:30起身后立即用额定功率1500瓦的电水壶烧水,10分钟能烧开一壶水。问朱老师家一年内用电水壶烧水共耗电多少度?能节省电费多少元?(一年按实际烧水360天计算,1度=1千瓦.时)
(1)若朱老师家某月用电100度,其中峰时段用电

(2)朱老师生活节俭,每天早晨5:30起身后立即用额定功率1500瓦的电水壶烧水,10分钟能烧开一壶水。问朱老师家一年内用电水壶烧水共耗电多少度?能节省电费多少元?(一年按实际烧水360天计算,1度=1千瓦.时)