- 数与式
- 方程与不等式
- 一元一次方程的应用——配套问题
- 一元一次方程的应用——工程问题
- 一元一次方程的应用——销售盈亏
- 一元一次方程的应用——比赛积分
- + 一元一次方程的应用——方案选择
- 一元一次方程的应用——数字问题
- 一元一次方程的应用——几何问题
- 一元一次方程的应用——和差倍分问题
- 一元一次方程的应用——电费和水费问题
- 一元一次方程的应用——行程问题
- 一元一次方程的应用——比例分配
- 一元一次方程的应用——日历问题
- 一元一次方程的应用——其他问题
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
某班主任暑假期间带领该班学生去旅游,甲旅行社说:“如果教师买全票一张,其余学生享受半价优惠。”乙旅行社说:“教师在内全部按票价的6折优惠。”若全票价是240元。
(1)如果有10名学生,应参加哪个旅行社,并说明理由;
(2)该班级如何选择旅行社会更合算?说明理由.
(1)如果有10名学生,应参加哪个旅行社,并说明理由;
(2)该班级如何选择旅行社会更合算?说明理由.
某商场开展春节促销活动出售A、B两种商品,活动方案如下两种:
(1)某单位购买A商品40件,B商品20件,选用何种方案划算?能便宜多少钱?
(2)某单位购买A商品x件(x为正整数),购买B商品的件数是A商品件数的2倍少2件,若两方案的实际付款一样,求x的值.
| A | B |
标价 | 90元/件 | 100元/件 |
方案一 | 每件按标价的30%返利 | 每件按标价的15%返利 |
方案二 | 所购商品一律按标价的20%返利 |
(1)某单位购买A商品40件,B商品20件,选用何种方案划算?能便宜多少钱?
(2)某单位购买A商品x件(x为正整数),购买B商品的件数是A商品件数的2倍少2件,若两方案的实际付款一样,求x的值.
王老师想为梦想班的同学们购买学习用品,了解到某商店每个书包价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典.
(1)每个书包和每本词典的价格各是多少元?
(2)王老师计划用900元为全班40位学生每人购买一件学习用品(一个书包或一本词典)后,余下的钱最少为多少元?此时购买书包和词典的方案是什么?
(1)每个书包和每本词典的价格各是多少元?
(2)王老师计划用900元为全班40位学生每人购买一件学习用品(一个书包或一本词典)后,余下的钱最少为多少元?此时购买书包和词典的方案是什么?
为庆祝“元旦”,光明学校统一组织合唱比赛,七、八年级共92人(其中七年级的人数多于八年级的人数,且七年级的人数不足90人)准备统一购买服装参加比赛.下面是某服装厂给出服装的价格表:
(1)如果两个年级分别单独购买服装一共应付5000元,求七、八年级各有多少学生参加合唱比赛;
(2)如果七年级参加合唱比赛的学生中,有10名同学抽调去参加绘画比赛,不能参加合唱比赛,请你为两个年级设计一种最省钱的购买服装方案.
购买服装的套数 | 1套至45套 | 46套至90套 | 91套以上(含91套) |
每套服装的价格 | 60元 | 50元 | 40元 |
购买服装的套数 | 1套至45套 | 46套至90套 | 91套以上(含91套) |
每套服装的价格 | 60元 | 50元 | 40元 |
(1)如果两个年级分别单独购买服装一共应付5000元,求七、八年级各有多少学生参加合唱比赛;
(2)如果七年级参加合唱比赛的学生中,有10名同学抽调去参加绘画比赛,不能参加合唱比赛,请你为两个年级设计一种最省钱的购买服装方案.
这个星期周末,七年级准备组织观看电影《我和我的祖国》,由各班班长负责买票,每班人数都多于50人,票价每张20元,一班班长问售票员买团体票是否可以优惠,售票员说:50人以上的团体票有两个优惠方案可选择:
方案一:全体人员可打8折;方案2:若打9折,有7人可以免票.
(I)2班有61名学生,他该选择哪个方案?
(II)一班班长思考一会儿说我们班无论选择哪种方案要付的钱是一样的,问你知道一班有几人吗?
方案一:全体人员可打8折;方案2:若打9折,有7人可以免票.
(I)2班有61名学生,他该选择哪个方案?
(II)一班班长思考一会儿说我们班无论选择哪种方案要付的钱是一样的,问你知道一班有几人吗?
小丽在水果店用18元买了苹果和橘子共6千克,已知苹果每千克3.2元,橘子每千克2.6元,设小丽买了苹果
千克,可列方程__________.

甲、乙两班学生到集市上购买苹果,苹果的价格如下:
甲班分两次共购买苹果30千克(第二次多于第一次),共付出256元;而乙班则一次购买苹果30千克.
(1)乙班比甲班少付出多少元?
(2)设甲班第一次购买苹果x千克.
①则第二次购买的苹果为 千克;
②甲班第一次、第二次分别购买多少千克?
购苹果数 | 不超过10千克 | 超过10千克但不超过20千克 | 超过20千克 |
每千克价格 | 10元 | 9元 | 8元 |
甲班分两次共购买苹果30千克(第二次多于第一次),共付出256元;而乙班则一次购买苹果30千克.
(1)乙班比甲班少付出多少元?
(2)设甲班第一次购买苹果x千克.
①则第二次购买的苹果为 千克;
②甲班第一次、第二次分别购买多少千克?
观察如图所示的图形,回答下列问题:
(1)按甲方式将桌子拼在一起.

4张桌子拼在一起共有 个座位,n张桌子拼在一起共有 个座位;
(2)按乙方式将桌子拼在一起.

6张桌子拼在一起共有 个座位,m张桌子拼在一起共有 个座位;
(3)某食堂有A,B两个餐厅,现有102张这样的长方形桌子,计划把这些桌子全放在两个餐厅,每个餐厅都要放有桌子.将a张桌子放在A餐厅,按甲方式每6张拼成1张大桌子;将其余桌子都放在B餐厅,按乙方式每4张桌子拼成1张大桌子,若两个餐厅一共有404个座位,问A,B两个餐厅各有多少个座位?
(1)按甲方式将桌子拼在一起.

4张桌子拼在一起共有 个座位,n张桌子拼在一起共有 个座位;
(2)按乙方式将桌子拼在一起.

6张桌子拼在一起共有 个座位,m张桌子拼在一起共有 个座位;
(3)某食堂有A,B两个餐厅,现有102张这样的长方形桌子,计划把这些桌子全放在两个餐厅,每个餐厅都要放有桌子.将a张桌子放在A餐厅,按甲方式每6张拼成1张大桌子;将其余桌子都放在B餐厅,按乙方式每4张桌子拼成1张大桌子,若两个餐厅一共有404个座位,问A,B两个餐厅各有多少个座位?
某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间房.设该店有x间客房,则所列方程为()
A.7x-7=9x+9 | B.7x+9=9x+7 |
C.7x+7=9x﹣9 | D.7x-7=9x﹣9 |
小明用的练习本可以到甲、乙两家商店购买,已知两商店的标价都是每本1元,甲商店的优惠条件是购买10本以上,从第11本开始按标价的70%出售;乙商店的优惠条件是,从第一本起按标价的80%出售.
(1)设小丽要购买x(x>10)练习本,则小丽到甲、乙两商店购买时,各须付款多少元,列代数式表示;
(2)买多少本练习本时,两家商店付款相同.
(1)设小丽要购买x(x>10)练习本,则小丽到甲、乙两商店购买时,各须付款多少元,列代数式表示;
(2)买多少本练习本时,两家商店付款相同.