- 数与式
- 平方差公式
- + 完全平方公式
- 运用完全平方公式进行运算
- 通过对完全平方公式变形求值
- 完全平方公式在几何图形中的应用
- 完全平方式
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
将多项式a2-6a-5变为(x+p)2+q的形式,结果正确的是( ).
A.(a+3)2-14 | B.(a-3)2-14 | C.(a+3)2+4 | D.(a-3)2+4 |
在下列横线上用含有a,b的代数式表示相应图形的面积.

⑴① ② ③ ④
⑵通过拼图,你发现前三个图形的面积与第四个图形面积之间有什么关系?请用数学式子表示: ;
⑶利用(2)的结论计算:
①
②

⑴① ② ③ ④
⑵通过拼图,你发现前三个图形的面积与第四个图形面积之间有什么关系?请用数学式子表示: ;
⑶利用(2)的结论计算:
①

②

把代数式通过配凑等手段,得到完全平方式,再运用完全平方式是非负性这一性质增加问题的条件,这种解题方法通常被称为配方法.配方法在代数式求值、解方程、最值问题等都有着广泛的应用.
例如:若代数式M=a2﹣2ab+2b2﹣2b+2,利用配方法求M的最小值:a2﹣2ab+2b2﹣2b+2=a2﹣2ab+b2+b2﹣2b+1+1=(a﹣b)2+(b﹣1)2+1.
∵(a﹣b)2≥0,(b﹣1)2≥0,
∴当a=b=1时,代数式M有最小值1.
请根据上述材料解决下列问题:
(1)在横线上添上一个常数项使之成为完全平方式:a2+4a+ ;
(2)若代数式M=
+2a+1,求M的最小值;
(3)已知a2+2b2+4c2﹣2ab﹣2b﹣4c+2=0,求代数式a+b+c的值.
例如:若代数式M=a2﹣2ab+2b2﹣2b+2,利用配方法求M的最小值:a2﹣2ab+2b2﹣2b+2=a2﹣2ab+b2+b2﹣2b+1+1=(a﹣b)2+(b﹣1)2+1.
∵(a﹣b)2≥0,(b﹣1)2≥0,
∴当a=b=1时,代数式M有最小值1.
请根据上述材料解决下列问题:
(1)在横线上添上一个常数项使之成为完全平方式:a2+4a+ ;
(2)若代数式M=

(3)已知a2+2b2+4c2﹣2ab﹣2b﹣4c+2=0,求代数式a+b+c的值.
如图,有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为3和15,则正方形A,B的面积之和为_____.

(1)已知x+y=5,xy=3,求x2+y2的值;
(2)已知x﹣y=5,x2+y2=51,求(x+y)2的值;
(3)已知x2﹣3x﹣1=0,求x2+
的值.
(2)已知x﹣y=5,x2+y2=51,求(x+y)2的值;
(3)已知x2﹣3x﹣1=0,求x2+
