两个边长分别为a和b的正方形如图放置(图1),其未叠合部分(阴影)面积为S1.若再在图1中大正方形的右下角摆放一个边长为b的小正方形(如图2),两个小正方形叠合部分(阴影)面积为S2.
(1)用含a,b的代数式分别表示S1,S2;
(2)若a+b=8,ab=13,求S1+S2的值;
(3)当S1+S2=40时,求出图3中阴影部分的面积S3.
(1)用含a,b的代数式分别表示S1,S2;
(2)若a+b=8,ab=13,求S1+S2的值;
(3)当S1+S2=40时,求出图3中阴影部分的面积S3.

在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()


A.(a+b)2=a2+2ab+b2 |
B.(a-b)2=a2-2ab+b2 |
C.a2-b2=(a+b)(a-b) |
D.(a+2b)(a-b)=a2+ab-2b2 |
如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的小正方形(a>0),剩余部分沿虚线剪拼成一个长方形(不重叠无缝隙),则长方形的面积为( )


A.(2a2-5a)cm2 | B.(3a+15)cm2 | C.(6a+9)cm2 | D.(6a+15)cm2 |