- 数与式
- 无理数
- 实数的性质
- + 实数的运算
- 实数的混合运算
- 程序设计与实数运算
- 新定义下的实数运算
- 实数运算的实际应用
- 与实数运算相关的规律题
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
按规律找式子:①4+0.2 ②8+0.3 ③12+0.4则第四个式子是( )
A.12+0.5 | B.14+0.5 | C.16+0.5 | D.18+0.5 |
阅读下面的材料:
按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.排在第一位的数称为第一项,记为a1,排在第二位的数称为第二项,记为a2,以此类推,排在第n位的数称为第n项,记为
.所以,数列的一般形式可以写成:
,…,
,…,一般的,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫做等差数列公差,公差通常用d表示.如:数列1,3,5,7,…为等差数列,期中a1=1,a2=3,公差为d=2.根据以上材料,解答下列问题:
(1)等差数列5,10,15,…的公差d为 ,第5项是 .
(2)如果一个数列
,…,
,…,是等差数列,且公差为d,那么根据定义可得到:
,
,
,…,
,….所以



……由此,请你填空完成等差数列的通项公式:
( )d
(3)求-4039是等差数列-5,-7,-9,…的第几项?并说明理由.
按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.排在第一位的数称为第一项,记为a1,排在第二位的数称为第二项,记为a2,以此类推,排在第n位的数称为第n项,记为



(1)等差数列5,10,15,…的公差d为 ,第5项是 .
(2)如果一个数列









……由此,请你填空完成等差数列的通项公式:

(3)求-4039是等差数列-5,-7,-9,…的第几项?并说明理由.
对于任意四个有理数a,b,c,d,可以组成两个有理数对(a,b)与(c,d).我们规定: (a,b)★(c,d)=bc-ad.例如:(1,2)★(3,4)=2×3-1×4=2.根据上述规定解决下列问题:
(1)有理数对(2,3)★(3,-2)= ;
(2)若有理数对(-3,2x-1)★(1,x+1)=12,则x= ;
(3)当满足等式(-3,2x-1)★(k,x+k)=3+2k的x是整数时,求整数k的值.
(1)有理数对(2,3)★(3,-2)= ;
(2)若有理数对(-3,2x-1)★(1,x+1)=12,则x= ;
(3)当满足等式(-3,2x-1)★(k,x+k)=3+2k的x是整数时,求整数k的值.
填空并解答相关问题:
(1)观察下列数1,3,9,27,81…,发现从第二项开始,每一项除以前一项的结果是一个常数,这个常数是________;根据此规律,如果an (n为正整数)表示这列数的第n项,那么an =__________;
你能求出它们的和吗?
计算方法:如果要求1+3+32+33+…+320的值,
可令S=1+3+32+33+…+320①
将①式两边同乘以3,得3S=3+32+33+…+320+321②
由②式左右两边分别减去①式左右两边,
得3S-S=(3+32+33+…+320+321)-(1+3+32+33+…+320),
即2S=321-1,两边同时除以2得
.
(2)你能用类比的思想求1+6+62+63+…+6100的值吗?写出求解过程.
(3)你能用类比的思想求1+m+m2+m3+…+mn(其中mn≠0,m≠1)的值吗?写出求解过程.
(1)观察下列数1,3,9,27,81…,发现从第二项开始,每一项除以前一项的结果是一个常数,这个常数是________;根据此规律,如果an (n为正整数)表示这列数的第n项,那么an =__________;
你能求出它们的和吗?
计算方法:如果要求1+3+32+33+…+320的值,
可令S=1+3+32+33+…+320①
将①式两边同乘以3,得3S=3+32+33+…+320+321②
由②式左右两边分别减去①式左右两边,
得3S-S=(3+32+33+…+320+321)-(1+3+32+33+…+320),
即2S=321-1,两边同时除以2得

(2)你能用类比的思想求1+6+62+63+…+6100的值吗?写出求解过程.
(3)你能用类比的思想求1+m+m2+m3+…+mn(其中mn≠0,m≠1)的值吗?写出求解过程.
一般情况下
不成立,但有些数可以使得它成立,例如
.我们称使得
成立的一对数m,n为“相伴数对”,记为(m,n).
(1)试说明(1,-4)是相伴数对;
(2)若(x,4)是相伴数对,求x的值.



(1)试说明(1,-4)是相伴数对;
(2)若(x,4)是相伴数对,求x的值.
对任意两个实数a,b,定义a⊗b=ab+a﹣b.
(Ⅰ)当a=
,b=π0时,请直接写出a⊗b的结果;
(Ⅱ)当a=m+4,b=m时,求a⊗b,并证明a⊗b≥0.
(Ⅰ)当a=

(Ⅱ)当a=m+4,b=m时,求a⊗b,并证明a⊗b≥0.