- 数与式
- 无理数
- 实数的性质
- + 实数的运算
- 实数的混合运算
- 程序设计与实数运算
- 新定义下的实数运算
- 实数运算的实际应用
- 与实数运算相关的规律题
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如果有一列数,从这列数的第2个数开始,每一个数与它的前一个数的比等于同一个非零的常数,这样的一列数就叫做等比数列(GeometricSequences).这个常数叫做等比数列的公比,通常用字母q表示(q≠0).
(1)观察一个等比列数1,
,…,它的公比q= ;如果an(n为正整数)表示这个等比数列的第n项,那么a18= ,an= ;
(2)如果欲求1+2+4+8+16+…+230的值,可以按照如下步骤进行:
令S=1+2+4+8+16+…+230…①
等式两边同时乘以2,得2S=2+4+8+16++32+…+231…②
由② ﹣①式,得2S﹣S=231﹣1
即(2﹣1)S=231﹣1
所以
请根据以上的解答过程,求3+32+33+…+323的值;
(3)用由特殊到一般的方法探索:若数列a1,a2,a3,…,an,从第二项开始每一项与前一项之比的常数为q,请用含a1,q,n的代数式表示an;如果这个常数q≠1,请用含a1,q,n的代数式表示a1+a2+a3+…+an.
(1)观察一个等比列数1,

(2)如果欲求1+2+4+8+16+…+230的值,可以按照如下步骤进行:
令S=1+2+4+8+16+…+230…①
等式两边同时乘以2,得2S=2+4+8+16++32+…+231…②
由② ﹣①式,得2S﹣S=231﹣1
即(2﹣1)S=231﹣1
所以

请根据以上的解答过程,求3+32+33+…+323的值;
(3)用由特殊到一般的方法探索:若数列a1,a2,a3,…,an,从第二项开始每一项与前一项之比的常数为q,请用含a1,q,n的代数式表示an;如果这个常数q≠1,请用含a1,q,n的代数式表示a1+a2+a3+…+an.
观察下面的点阵图和相应的等式,探究其中的规律:
(1)在④后面的横线上写出相应的等式:

①1=12;②1+3=22;③1+3+5=32;④ ;⑤1+3+5+7+9=52;…
(2)请写出第n个等式;
(3)利用(2)中的等式,计算21+23+25+…+99.
(1)在④后面的横线上写出相应的等式:

①1=12;②1+3=22;③1+3+5=32;④ ;⑤1+3+5+7+9=52;…
(2)请写出第n个等式;
(3)利用(2)中的等式,计算21+23+25+…+99.
我们知道黄金比例是
,利用这个比例,我们规定一种“黄金算法”即;a
b
,比如:1
2
.若x
(2
4)
,则x的值为_______________








用“§”定义新运算: 对于任意的有理数a、b, 都有a§b = b2 +1. 例如: 7§4 = 42 +1 = 17. 那么 6§ -3 = __________,