- 数与式
- 无理数
- 实数的性质
- + 实数的运算
- 实数的混合运算
- 程序设计与实数运算
- 新定义下的实数运算
- 实数运算的实际应用
- 与实数运算相关的规律题
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
定义:对于一个有理数x,我们把[x]称作x的对称数.
若
,则[x]=x-2:若x<0,则[x]=x+2.例:[1]=1-2=-1,[-2]=-2+2=0
(1)求[
][-1]的值;
(2)已知有理数a>0.b<0,且满足[a]=[b],试求代数式
的值:
(3)解方程:[2x]+[x+1]=1
若

(1)求[

(2)已知有理数a>0.b<0,且满足[a]=[b],试求代数式

(3)解方程:[2x]+[x+1]=1
(观察)
51×49=(
)2﹣(
)2
102×98=(
)2﹣(
)2
2001×1999=(
)2﹣(
)2
(发现)根据阅读回答问题
(1)请根据上面式子的规律填空:
998×1002= 2﹣ 2
(2)在上述乘法运算中,设第一个因数为m,第二个因数为n,请用有m、n的符号语言写出你所发现的规律,并证明.
(应用)请运用(发现)中总结的规律计算:59.8×60.2
51×49=(


102×98=(


2001×1999=(


(发现)根据阅读回答问题
(1)请根据上面式子的规律填空:
998×1002= 2﹣ 2
(2)在上述乘法运算中,设第一个因数为m,第二个因数为n,请用有m、n的符号语言写出你所发现的规律,并证明.
(应用)请运用(发现)中总结的规律计算:59.8×60.2