- 数与式
- 数轴的三要素及其画法
- 用数轴上的点表示有理数
- 利用数轴比较有理数的大小
- 数轴上两点之间的距离
- + 数轴上的动点问题
- 根据点在数轴的位置判断式子的正负
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
已知A、B两地相距50米,小乌龟从A地出发前往B地,第一次它前进1米,第二次它后退2米,第三次再前进3米,第四次又向后退4米…,按此规律行进,如果A地在数轴上表示的数为﹣16.

(1)求出B地在数轴上表示的数;
(2)若B地在原点的右侧,经过第七次行进后小乌龟到达点P,第八次行进后到达点Q,点P、点Q到A地的距离相等吗?说明理由?
(3)若B地在原点的右侧,那么经过100次行进后,小乌龟到达的点与点B之间的距离是多少?

(1)求出B地在数轴上表示的数;
(2)若B地在原点的右侧,经过第七次行进后小乌龟到达点P,第八次行进后到达点Q,点P、点Q到A地的距离相等吗?说明理由?
(3)若B地在原点的右侧,那么经过100次行进后,小乌龟到达的点与点B之间的距离是多少?
如图,半径为1的小圆与半径为2的大圆上有一点与数轴上原点重合,两圆在数轴上做无滑动的滚动,小圆的运动速度为每秒π个单位,大圆的运动速度为每秒2π个单位.
(1)若大圆沿数轴向左滚动1周,则该圆与数轴重合的点所表示的数是 ;
(2)若小圆不动,大圆沿数轴来回滚动,规定大圆向右滚动时间记为正数,向左滚动时间记为负数,依次滚动的情况记录如下(单位:秒):﹣1,+2,﹣4,﹣2,+3,﹣8
①第几次滚动后,大圆离原点最远?
②当大圆结束运动时,大圆运动的路程共有多少?此时两圆与数轴重合的点之间的距离是多少?(结果保留π)
(3)若两圆同时在数轴上各自沿着某一方向连续滚动,滚动一段时间后两圆与数轴重合的点之间相距9π,求此时两圆与数轴重合的点所表示的数.

(1)若大圆沿数轴向左滚动1周,则该圆与数轴重合的点所表示的数是 ;
(2)若小圆不动,大圆沿数轴来回滚动,规定大圆向右滚动时间记为正数,向左滚动时间记为负数,依次滚动的情况记录如下(单位:秒):﹣1,+2,﹣4,﹣2,+3,﹣8
①第几次滚动后,大圆离原点最远?
②当大圆结束运动时,大圆运动的路程共有多少?此时两圆与数轴重合的点之间的距离是多少?(结果保留π)
(3)若两圆同时在数轴上各自沿着某一方向连续滚动,滚动一段时间后两圆与数轴重合的点之间相距9π,求此时两圆与数轴重合的点所表示的数.


数轴上一点A表示﹣3,若将A点向左平移5个单位长度,再向右平移6个单位长度,则此时A 点表示的数是( )
A.﹣1 | B.﹣2 | C.﹣3. | D.1 |
先阅读材料:如图(1),在数轴上
示的数为
,
点表示的数为
,则点
到点
的距离记为
.线段
的长可以用右边的数减去左边的数表示,即
.

解决问题:如图(2),数轴上点
表示的数是-4,点
表示的数是2,点
表示的数是6.
(1)若数轴上有一点
,且
,则点
表示的数为 ;
(2)点
、
、
开始在数轴上运动,若点
以每秒1个单位长度的速度向左运动,同时,若点
和点
分别以每秒2个单位长度和3个单位长度的速度向右运动,假设
秒钟过后,若点
与点
之间的距离表示为
,点
与点
之间的距离表示为
,点
与点
之间的距离表示为
.则点
表示的数是 (用含
的代数式表示),
(用含
的代数式表示).
(3)请问:
的值是否随着时间
的变化而改变?若变化,请说明理由;若不变,请求其值.










解决问题:如图(2),数轴上点



(1)若数轴上有一点



(2)点




















(3)请问:


阅读理解:若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是(A,B)的好点.
例如,如图1,点A表示的数为-1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的好点;
又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的好点,但点D是(B,A)的好点.

知识运用:
⑴ 如图1,点B是(D,C)的好点吗? (填是或不是);
⑵ 如图2,A、B为数轴上两点,点A所表示的数为-40,点B所表示的数为20.现有一只电子蚂蚁P从点B出发,以2个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的好点?
例如,如图1,点A表示的数为-1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的好点;
又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的好点,但点D是(B,A)的好点.

知识运用:
⑴ 如图1,点B是(D,C)的好点吗? (填是或不是);
⑵ 如图2,A、B为数轴上两点,点A所表示的数为-40,点B所表示的数为20.现有一只电子蚂蚁P从点B出发,以2个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的好点?

结合数轴与绝对值的知识回答下列问题:
一般地,数轴上表示数m和数n的两点之间的距离公式为|m﹣n|.
(1)例如:数轴上表示4和1的两点之间的距离为|4﹣1|=
数轴表示5和﹣2的两点之间的距离为|5﹣(﹣2)|=|5+2|=
(2)数轴上表示数a的点与表示﹣4的点之间的距离表示为
数轴上表示数a的点与表示2的点之间的距离表示为
若数
轴上a位于﹣4与2之间,则|a+4|+|a﹣2|的值为 ;
(3)当a= 时,|a+5|+|a﹣1|+|a﹣4|的值最小,最小值为 .
一般地,数轴上表示数m和数n的两点之间的距离公式为|m﹣n|.
(1)例如:数轴上表示4和1的两点之间的距离为|4﹣1|=
数轴表示5和﹣2的两点之间的距离为|5﹣(﹣2)|=|5+2|=
(2)数轴上表示数a的点与表示﹣4的点之间的距离表示为
数轴上表示数a的点与表示2的点之间的距离表示为
若数

(3)当a= 时,|a+5|+|a﹣1|+|a﹣4|的值最小,最小值为 .
已知:a是最大的负整数,b是最小的正整数,且c=a+b,请回答下列问题:

(1)请直接写出a,b,c的值:a= ;b= ;c= ;
(2)a,b,c在数轴上所对应的点分别为A,B,C,请在如图的数轴上表示出A,B,C三点;
(3)在(2)的情况下.点A,B,C开始在数轴上运动,若点A,点C以每秒1个单位的速度向左运动,同时,点B以每秒5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,请问:AB﹣BC的值是否随着时间的变化而改变?若变化,请说明理由;若不变,请求出AB﹣BC的值.

(1)请直接写出a,b,c的值:a= ;b= ;c= ;
(2)a,b,c在数轴上所对应的点分别为A,B,C,请在如图的数轴上表示出A,B,C三点;
(3)在(2)的情况下.点A,B,C开始在数轴上运动,若点A,点C以每秒1个单位的速度向左运动,同时,点B以每秒5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,请问:AB﹣BC的值是否随着时间的变化而改变?若变化,请说明理由;若不变,请求出AB﹣BC的值.
在一条不完整的数轴上从左到右有点A,B,D,C,其中AB=2,BD=3,DC=1,如图所示,设点A,B,D,C所对应数的和是p.

(1)若以B为原点.写出点A,D,C所对应的数,并计算p的值;
(2)①若原点O在图中数轴上点C的右边,且CO=x,p=﹣71,求x.
②此时,若数轴上存在一点E,使得AE=2CE,求点E所对应的数(直接写出答案).

(1)若以B为原点.写出点A,D,C所对应的数,并计算p的值;
(2)①若原点O在图中数轴上点C的右边,且CO=x,p=﹣71,求x.
②此时,若数轴上存在一点E,使得AE=2CE,求点E所对应的数(直接写出答案).
如图,点A、B和线段CD都在数轴上,点A,C,D,B起始位置所表示的数分别为-2,0,3,12;线段CD沿数轴的正方向以每秒1个单位长度的速度运动,运动时间为1秒.

(1)当
=0秒时,AC的长为________,当
=2秒时,AC的长为________;
(2)用含有
的代数式表示AC的线段长为________;
(3)当
=__________秒时,AC-BD=5;当
=___________秒时AC+BD=15;
(4)若点A与线段CD同时出发沿数轴的正方向移动,点A的速度为每秒2个单位长度,在移动过程中,是否存在某一时刻使得AC=2BD,若存在,请直接求出
的值;若不存在,请说明理由.

(1)当


(2)用含有

(3)当


(4)若点A与线段CD同时出发沿数轴的正方向移动,点A的速度为每秒2个单位长度,在移动过程中,是否存在某一时刻使得AC=2BD,若存在,请直接求出

正方形
在数轴上的位置如图所示,点
,
对应的数分别为-1和0,若正方形
绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点
所对应的数为1;翻转2次后,点
所对应的数为2;翻转3次后,点
所对应的数为3;翻转4次后,点
所对应的数为4,…,则连续翻转2019次后,数轴上数2019所对应的点是( )










A.![]() | B.![]() | C.![]() | D.![]() |