- 数与式
- 正数和负数
- 有理数的初步认识
- + 数轴
- 数轴的三要素及其画法
- 用数轴上的点表示有理数
- 利用数轴比较有理数的大小
- 数轴上两点之间的距离
- 数轴上的动点问题
- 根据点在数轴的位置判断式子的正负
- 相反数
- 绝对值
- 有理数大小比较
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
点A、B、C在数轴上表示的数分别为a,b,c,且a,b,c满足(b+2)2+(c﹣24)2=0,多项式x|a+3|y2﹣ax3y+xy2﹣1是五次四项式.
(1)a的值为 ,b的值为 ,c的值为 ;
(2)若数轴上有三个动点M、N、P,分别从点A、B、C开始同时出发在数轴上运动,速度分别为每秒1个单位长度、7个单位长度3个单位长度.
①若点P向左运动,点M向右运动,点N先向左运动,遇到点M后回头再向右运动,遇到点P后又回头再向左运动,……,这样直到点P遇到点M时三点都停止运动,求点N所走的路程;
②若点M、N向右运动,点P向左运动,点Q为线段PN中点,在运动过程中,OQ﹣
MN的值是否发生变化?若不变,求其值;若变化,说明理由.
(1)a的值为 ,b的值为 ,c的值为 ;
(2)若数轴上有三个动点M、N、P,分别从点A、B、C开始同时出发在数轴上运动,速度分别为每秒1个单位长度、7个单位长度3个单位长度.
①若点P向左运动,点M向右运动,点N先向左运动,遇到点M后回头再向右运动,遇到点P后又回头再向左运动,……,这样直到点P遇到点M时三点都停止运动,求点N所走的路程;
②若点M、N向右运动,点P向左运动,点Q为线段PN中点,在运动过程中,OQ﹣

已知在数轴
上,一动点
从原点
出发,沿直线
以每秒钟
个单位长度的速度来回移动,其移动方式是先向右移动
个单位长度,再向左移动
个单位长度,又向右移动
个单位长度,再向左移动
个单位长度,又向右移动
个单位长度…

(1)求出
秒钟后动点
所处的位置;
(2)如果在数轴
上还有一个定点
,且
与原点
相距20个单位长度,问:动点
从原点出发,可能与点
重合吗?若能,则第一次与点
重合需多长时间?若不能,请说明理由.











(1)求出


(2)如果在数轴







如图:在数轴上A点表示数a,B点表示数b,C点表示数C,b是最小的正整数,且a=﹣2,c=7.
(1)若将数轴折叠,使得A点与C点重合,则点B与数 表示的点重合;
(2)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.
则AB= ,AC= ,BC= .(用含t的代数式表示)
(3)请问:3BC﹣2AB的值是否随着时间的变化而改变?若变化,请说明理由;若不变,请求其值.
(1)若将数轴折叠,使得A点与C点重合,则点B与数 表示的点重合;
(2)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.
则AB= ,AC= ,BC= .(用含t的代数式表示)
(3)请问:3BC﹣2AB的值是否随着时间的变化而改变?若变化,请说明理由;若不变,请求其值.

若有理数a,b,c在数轴上的位置如图所示,则|a-b|+|c-b|-|a+c|化简的结果为 ( )


A.-2a | B.-2b | C.-2c | D.0 |
当
时,在数轴上数
和数
两点之间的距离表示为
,若点
表示的数分别为
,点
与点
之间的距离表示为
,点
与点
之间的距离表示为
,点
与点
之间的距离表示为

(1)在图中标出三点的位置

;
.
(3)点
开始在数轴上运动,若点
以每秒
个单位长度的速度向左运动,同时,点
和
点分别以每秒
个单位长度和
个单位长度的速度向右运动.
试问:①
秒后点
表示的数为 .
②
的值是否随着运动时间
的变化而改变?若变化,请说明理由;若不变,请求其值.
















(1)在图中标出三点的位置



(3)点







试问:①


②

