- 数与式
- 正数和负数
- 有理数的初步认识
- + 数轴
- 数轴的三要素及其画法
- 用数轴上的点表示有理数
- 利用数轴比较有理数的大小
- 数轴上两点之间的距离
- 数轴上的动点问题
- 根据点在数轴的位置判断式子的正负
- 相反数
- 绝对值
- 有理数大小比较
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在数轴上有 A 、B 、C 、D 四个点,分别对应的数为 a ,b , c , d ,且满足 a ,b 是方程| x+7|=1的两个解(a <b),且(c -12)2 与| d -16 |互为相反数.

(1)填空: a = 、b = 、 c = 、 d = ;
(2)若线段 AB 以 3 个单位/ 秒的速度向右匀速运动,同时线段CD 以 1 单位长度/ 秒向左匀速运动,并设运动时间为t 秒,A 、B 两点都运动在线段CD 上(不与C , D 两个端点重合),若BD=2AC ,求t 的值;
(3)在(2)的条件下,线段 AB ,线段CD 继续运动,当点 B 运动到点 D 的右侧时,问是否存在时间t ,使 BC=3AD ?若存在,求t 的值;若不存在,说明理由.

(1)填空: a = 、b = 、 c = 、 d = ;
(2)若线段 AB 以 3 个单位/ 秒的速度向右匀速运动,同时线段CD 以 1 单位长度/ 秒向左匀速运动,并设运动时间为t 秒,A 、B 两点都运动在线段CD 上(不与C , D 两个端点重合),若BD=2AC ,求t 的值;
(3)在(2)的条件下,线段 AB ,线段CD 继续运动,当点 B 运动到点 D 的右侧时,问是否存在时间t ,使 BC=3AD ?若存在,求t 的值;若不存在,说明理由.
同学们都知道,
表示5与
之差的绝对值,实际上也可以理解为5与
两数在数轴上所对应的两点之间的距离.回答下列问题:
(1)
_______.
(2)找出所有符合条件的整数
,使得
成立,这样的整数是______.
(3)对于任何有理数
,
的最小值是______.
(4)对于任何有理数
,
的最小值是_____,此时
的值是______.



(1)

(2)找出所有符合条件的整数


(3)对于任何有理数


(4)对于任何有理数



如图1,已知数轴上有三点A,B,C.点A,C对应的数分别是-40和20,点B是AC的中点.

(1)请直接写出点B对应的数: ;
(2)如图2,动点P,Q分别从A,C两点同时出发向左运动,点P,Q的速度分别为2个单位长度/秒,3个单位长度/秒,点E为线段PQ的中点.设运动的时间为t秒(t > 0).
①当t为何值时,点B与点E的距离是5个单位长度?
②当点E在点A的右侧时,m▪AE+QC的值不随时间的变化而改变,请求出m的值.

(1)请直接写出点B对应的数: ;
(2)如图2,动点P,Q分别从A,C两点同时出发向左运动,点P,Q的速度分别为2个单位长度/秒,3个单位长度/秒,点E为线段PQ的中点.设运动的时间为t秒(t > 0).
①当t为何值时,点B与点E的距离是5个单位长度?
②当点E在点A的右侧时,m▪AE+QC的值不随时间的变化而改变,请求出m的值.
如图,数轴上点
,
表示的数
,
满足
,点
为线段
上一点(不与
,
重合),
,
两点分别从
,
同时向数轴正方向移动,点
运动速度为每秒2个单位长度,点
运动速度为每秒3个单位长度,设运动时间为
秒(
).

(1)直接写出
______,
______;
(2)若
点表示的数是0.
①
,则
的长为______(直接写出结果);
②点
,
在移动过程中,线段
,
之间是否存在某种确定的数量关系,判断并说明理由;
(3)点
,
均在线段
上移动,若
,且
到线段
的中点
的距离为3,请求出符合条件的点
表示的数.


















(1)直接写出


(2)若

①


②点




(3)点








如图,数轴上点A表示的数为﹣3,点B表示的数为3,若在数轴上存在点P,使得AP+BP=m,则称点P为点A和B的“m级精致点”,例如,原点O表示的数为0,则AO+BO=3+3=6,则称点O为点A和点B的“6级精致点”,根据上述规定,解答下列问题:
(1)若点C轴在数轴上表示的数为﹣5,点C为点A和点B的“m级精致点”,则m= ;
(2)若点D是数轴上点A和点B的“8级精致点”,求点D表示的数;
(3)如图,数轴上点E和点F分别表示的数是﹣2和4,若点G是点E和点F的“m级精致点”,且满足GE=3GF,求m的值.
(1)若点C轴在数轴上表示的数为﹣5,点C为点A和点B的“m级精致点”,则m= ;
(2)若点D是数轴上点A和点B的“8级精致点”,求点D表示的数;
(3)如图,数轴上点E和点F分别表示的数是﹣2和4,若点G是点E和点F的“m级精致点”,且满足GE=3GF,求m的值.

认真阅读下面的材料,完成有关问题.
材料:在学习绝对值时,老师教过我们绝对值的几何含义,一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.
问题(1):点A、B、C在数轴上分别表示有理数x、﹣2、1,那么A到B的距离与A到C的距离之和可表示为 (用含绝对值的式子表示).
问题(2):利用数轴探究:①找出满足|x﹣3|+|x+1|=6的x的所有值是 ;
②设|x﹣3|+|x+1|=p,当x的值取在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是 ;当x的值取在 的范围时,|x|+|x﹣2|的最小值是 .
问题(3):求|x﹣3|+|x﹣2|+|x+1|的最小值以及此时x的值.
材料:在学习绝对值时,老师教过我们绝对值的几何含义,一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.
问题(1):点A、B、C在数轴上分别表示有理数x、﹣2、1,那么A到B的距离与A到C的距离之和可表示为 (用含绝对值的式子表示).
问题(2):利用数轴探究:①找出满足|x﹣3|+|x+1|=6的x的所有值是 ;
②设|x﹣3|+|x+1|=p,当x的值取在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是 ;当x的值取在 的范围时,|x|+|x﹣2|的最小值是 .
问题(3):求|x﹣3|+|x﹣2|+|x+1|的最小值以及此时x的值.
数轴上表示数
的点与原点的距离叫做数
的绝对值,记作
.数轴上表示数
的点与表示数
的点的距离记作
,如
表示数轴上表示数3的点与表示数5的点的距离,
表示数轴上表示数3的点与表示数-5的点的距离,
表示数轴上表示数
的点与表示数3的点的距离.

根据以上材料回答下列问题:(将结果直接填写在答题卡相应位置,不写过程)
(1)若
,则
________,若
,则
___________;
(2)若
,则
能取到的最小值是_________,最大值是_________;
(3)关于
的式子
的取值范围是_________.











根据以上材料回答下列问题:(将结果直接填写在答题卡相应位置,不写过程)
(1)若




(2)若


(3)关于


在数轴上,
为原点,点
表示数
,点
表示数
,
.

(1)求线段
的长;
(2)如图,动点
从点
出发,以每秒1个单位的速度沿数轴向左匀速运动,动点
从点
出发,以每秒
个单位的速度沿数轴向右匀速运动.
、
两点同时出发,运动时间为
.
(i)当
时,求运动时间
;
(ii)
、
、
三点中的某一个点是另两个点的中点,求点
表示的数
.







(1)求线段

(2)如图,动点








(i)当


(ii)





阅读下面材料:
点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|
当A、B两点中有一点在原点时,不妨设点A在原点(如图1)|AB|=|OB|=|b|=|a﹣b|;
当A、B两点都不在原点时
①当点A、B都在原点的右边(如图2)
|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|
②当点A、B都在原点的左边(如图3)
|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|
③当点A、B在原点的两边(如图4)
|AB|=|OB|+|OA|=|b|+|a|=﹣b+a=|a﹣b|
回答下列问题:
(1)数轴上表示1和5的两点之间的距离是 ,数轴上表示1和﹣3的两点之间的距离是 ;
(2)数轴上若点A表示的数是x,点B表示的数是﹣2,则点A和B之间的距离是 ,若|AB|=3,那么x为 ;
(3)当x是 时,代数式|x+2|+|x﹣1|=5;
(4)若点A表示的数﹣1,点B与点A的距离是10,且点B在点A的右侧,动点P、Q同时从A、B出发沿数轴正方向运动,点P的速度是每秒3个单位长度,点Q的速度是每秒
个单位长度,求运动几秒后,点Q与点P相距1个单位?(请写出必要的求解过程)
点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|
当A、B两点中有一点在原点时,不妨设点A在原点(如图1)|AB|=|OB|=|b|=|a﹣b|;
当A、B两点都不在原点时
①当点A、B都在原点的右边(如图2)
|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|
②当点A、B都在原点的左边(如图3)
|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|
③当点A、B在原点的两边(如图4)
|AB|=|OB|+|OA|=|b|+|a|=﹣b+a=|a﹣b|
回答下列问题:
(1)数轴上表示1和5的两点之间的距离是 ,数轴上表示1和﹣3的两点之间的距离是 ;
(2)数轴上若点A表示的数是x,点B表示的数是﹣2,则点A和B之间的距离是 ,若|AB|=3,那么x为 ;
(3)当x是 时,代数式|x+2|+|x﹣1|=5;
(4)若点A表示的数﹣1,点B与点A的距离是10,且点B在点A的右侧,动点P、Q同时从A、B出发沿数轴正方向运动,点P的速度是每秒3个单位长度,点Q的速度是每秒


如图,在数轴上点A表示数a,点C表示数c,且多项式x3+15x2y2﹣20的常数项是a,最高次项的系数是c.我们把数轴上两点之间的距离用表示两点的大写字母一起标记.比如,点A与点B之间的距离记作AB.
(1)求a,c的值;
(2)动点B从数﹣6对应的点开始向右运动,速度为每秒2个单位长度.同时点A,C在数轴上运动,点A,C的速度分别为每秒3个单位长度,每秒4个单位长度,设运动时间为t秒.
①若点A向右运动,点C向左运动,AB=BC.求t的值;
②若点A向左运动,点C向石运动,2AB﹣m•BC的值不随时间t的变化而改变,求出m的值.
(1)求a,c的值;
(2)动点B从数﹣6对应的点开始向右运动,速度为每秒2个单位长度.同时点A,C在数轴上运动,点A,C的速度分别为每秒3个单位长度,每秒4个单位长度,设运动时间为t秒.
①若点A向右运动,点C向左运动,AB=BC.求t的值;
②若点A向左运动,点C向石运动,2AB﹣m•BC的值不随时间t的变化而改变,求出m的值.
