- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- + 复数代数形式的乘法运算
- 复数的乘方
- 复数范围内分解因式
- 复数范围内方程的根
- 复数的除法运算
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设常数
,已知复数
,
和
,其中
均为实数,
为虚数单位,且对于任意复数
,有
,将
作为点
的坐标,
作为点
的坐标,通过关系式
,可以看作是坐标平面上点的一个变换,它将平面上的点
变到这个平面上的点
.
(1)分别写出
和
用
表示的关系式;
(2)设
,当点
在圆
上移动时,求证:点
经该变换后得到的点
落在一个圆上,并求出该圆的方程;
(3)求证:对于任意的常数
,总存在曲线
,使得当点
在
上移动时,点
经这个变换后得到的点
的轨迹是二次函数
的图像,并写出对于正常数
,满足条件的曲线
的方程.















(1)分别写出



(2)设





(3)求证:对于任意的常数








