- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 对算法相关概念的辨析
- 判断是否为算法
- + 用自然语言设计算法
- 算法步骤的排序
- 完善自然语言描述的算法
- 理解自然语言描述的算法功能
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
”鸡兔同笼”我国隋朝时期数学著作《孙子算经》中的一个有趣题目:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”
(1)求出鸡、兔各几只?
(2)根据提示,设计这类问题的通用解法,并画出算法的程序框图.
解:设有
只鸡,
只兔,总头数为
,总脚数为
,则
,解方程得:
用数学语言:
第一步:输入______,______;
第二步:计算鸡的只数______;
第三步:计算兔的只数______;
第四步:输出______.
(1)求出鸡、兔各几只?
(2)根据提示,设计这类问题的通用解法,并画出算法的程序框图.
解:设有






用数学语言:
第一步:输入______,______;
第二步:计算鸡的只数______;
第三步:计算兔的只数______;
第四步:输出______.

结合下面的算法:
第一步,输入x.
第二步,判断x是否小于0,若是,则输出3x+2,
否则执行第三步.
第三步,输出x2+1.
当输入的x的值分别为-1,0,1时,输出的结果分别为___、___、___.
第一步,输入x.
第二步,判断x是否小于0,若是,则输出3x+2,
否则执行第三步.
第三步,输出x2+1.
当输入的x的值分别为-1,0,1时,输出的结果分别为___、___、___.
有一堆形状、大小相同的珠子,其中只有一粒重量比其它的轻,某同学经过思考,他说根据科学的算法,利用天平,三次肯定能找到这粒最轻的珠子,则这堆珠子最多有______粒.
某实验老师需将495 g氢氧化钙平均分成三份,当时称量物品的天平只有50 g和5 g的两个砝码,如何设计算法使称量的次数最少?最少需称量多少次?