- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 离散型随机变量及其分布列
- 二项分布及其应用
- + 离散型随机变量的均值与方差
- 离散型随机变量的均值
- 常用分布的均值
- 离散型随机变量的方差
- 常用分布的方差
- 正态分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
十九大提出,加快水污染防治,建设美丽中国
根据环保部门对某河流的每年污水排放量
单位:吨
的历史统计数据,得到如下频率分布表:
将污水排放量落入各组的频率作为概率,并假设每年该河流的污水排放量相互独立.
(Ⅰ)求在未来3年里,至多1年污水排放量
的概率;
(Ⅱ)该河流的污水排放对沿河的经济影响如下:当
时,没有影响;当
时,经济损失为10万元;当
时,经济损失为60万元
为减少损失,现有三种应对方案:
方案一:防治350吨的污水排放,每年需要防治费
万元;
方案二:防治310吨的污水排放,每年需要防治费2万元;
方案三:不采取措施.
试比较上述三种方案,哪种方案好,并请说明理由.



污水量 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频率 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
将污水排放量落入各组的频率作为概率,并假设每年该河流的污水排放量相互独立.
(Ⅰ)求在未来3年里,至多1年污水排放量

(Ⅱ)该河流的污水排放对沿河的经济影响如下:当




方案一:防治350吨的污水排放,每年需要防治费

方案二:防治310吨的污水排放,每年需要防治费2万元;
方案三:不采取措施.
试比较上述三种方案,哪种方案好,并请说明理由.
出租车司机从南昌二中新校区到老校区(苏圃路)途中有
个交通岗,假设他在各交通岗遇到红灯是相互独立的,并且概率都是
则这位司机在途中遇到红灯数
的期望为____ .(用分数表示)


