- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 计算条件概率
- 条件概率性质的应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
有一名高二学生盼望2020年进入某名牌大学学习,假设该名牌大学有以下条件之一均可录取:①2020年2月通过考试进入国家数学奥赛集训队(集训队从2019年10月省数学竞赛一等奖中选拔):②2020年3月自主招生考试通过并且达到2020年6月高考重点分数线,③2020年6月高考达到该校录取分数线(该校录取分数线高于重点线),该学生具备参加省数学竞赛、自主招生和高考的资格且估计自己通过各种考试的概率如下表
若该学生数学竞赛获省一等奖,则该学生估计进入国家集训队的概率是0.2.若进入国家集训队,则提前录取,若未被录取,则再按②、③顺序依次录取:前面已经被录取后,不得参加后面的考试或录取.(注:自主招生考试通过且高考达重点线才能录取)
(Ⅰ)求该学生参加自主招生考试的概率;
(Ⅱ)求该学生参加考试的次数
的分布列及数学期望;
(Ⅲ)求该学生被该校录取的概率.
省数学竞赛一等奖 | 自主招生通过 | 高考达重点线 | 高考达该校分数线 |
0.5 | 0.6 | 0.9 | 0.7 |
若该学生数学竞赛获省一等奖,则该学生估计进入国家集训队的概率是0.2.若进入国家集训队,则提前录取,若未被录取,则再按②、③顺序依次录取:前面已经被录取后,不得参加后面的考试或录取.(注:自主招生考试通过且高考达重点线才能录取)
(Ⅰ)求该学生参加自主招生考试的概率;
(Ⅱ)求该学生参加考试的次数

(Ⅲ)求该学生被该校录取的概率.
某地区空气质量监测资料表明,一天的空气质量为优良的概率是
,连续两天为优良的概率是
,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是_______.


某班组织由甲、乙、丙等5名同学参加的演讲比赛,现采用抽签法决定演讲顺序,在“学生甲不是第一个出场,学生乙不是最后一个出场”的前提下,学生丙第一个出场的概率为( )
A.![]() | B.![]() | C.![]() | D.![]() |
在一个坛子中装有
个除颜色外完全相同的玻璃球,其中有
个红球,
个蓝球,
个黄球,
个绿球,现从中任取一球后(不放回),再取一球,则已知第一个球为红色的情况下第二个球为黄色的概率为( )





A.![]() | B.![]() | C.![]() | D.![]() |
一个袋子中有两个黑球和三个白球,如果不放回地抽取两个球,记事件“第一次抽到黑球”为
,事件“第二次抽到黑球”为
,则
( )



A.![]() | B.![]() | C.![]() | D.![]() |
2019举国上下以各种不同的形式共庆新中国成立70周年,某商家计划以“我和我的祖国"为主题举办一次有奖消费活动,此商家先把某品牌酒重新包装,包装时在每瓶酒的包装盒底部随机印上“中"国"“梦”三个字样中的一个,之后随机装箱(1箱4瓶),并规定:若顾客购买的一箱酒中的四瓶酒底部所印的字为同一个字,则此顾客获得一等奖,此箱洒可优惠36元;若顾客购买的一箱酒的四瓶洒底部集齐了“中"“国"二字且仅有此二字,则此顾客获得二等奖,此箱洒可优惠27元;若顾客购买的一箱酒中的四瓶酒的底部集齐了“中”“国"“梦”三个字,则此顾客获得三等奖,此箱酒可优惠18元(注:每箱单独兑奖,箱与箱之间的包装盒不能混).
(1)①设
为顾客购买一箱酒所优惠的钱数,求
的分布列;
②若不计其他损耗,商家重新包装后每箱酒提价a元,试问a取什么范围时才能使活动后的利润不会小于搞活动之前?
(2)若顾客一次性购买3箱酒,并都中奖,可再加赠一张《我和我的祖国》电影票,顾客小张一次性购买3箱酒,共优惠了72元,试问小张能否得到电影票,概率多大?
(1)①设


②若不计其他损耗,商家重新包装后每箱酒提价a元,试问a取什么范围时才能使活动后的利润不会小于搞活动之前?
(2)若顾客一次性购买3箱酒,并都中奖,可再加赠一张《我和我的祖国》电影票,顾客小张一次性购买3箱酒,共优惠了72元,试问小张能否得到电影票,概率多大?
甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以
和
表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以
表示由乙罐取出的球是红球的事件,则下列结论中正确的是________(写出所有正确结论的编号).
①
;
②
;
③事件
与事件
相互独立;
④
是两两互斥的事件;
⑤
的值不能确定,因为它与
中哪一个发生有关



①

②

③事件


④

⑤


一个盒子里有6只好晶体管,4只坏晶体管,任取两次,每次取一只,每次取后不放回,则若已知第一只是好的,则第二只也是好的概率为( )
A.![]() | B.![]() | C.![]() | D.![]() |
8个互不相同的小球中,有5个红球,3个白球,现在不放回地依次摸出2个球,在第一次摸出白球的条件下,第二次也摸出白球的概率是______.