- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 计算条件概率
- + 条件概率性质的应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
一盒子装有4 只产品,其中有3 只一等品,1只二等品.从中取产品两次,每次任取一只,作不放回抽样.设事件A为“第一次取到的是一等品” ,事件B 为“第二次取到的是一等品”,试求条件概率 P(B|A)=
由“0”、“1”、“2” 组成的三位数码组中,若用A表示“第二位数字为0”的事件,用B表示“第一位数字为0”的事件,则P(A|B)=( )
A.
B.
C.
D.
A.




某花店每天以每枝5元的价格从农场购进若干枝郁金香,然后以每枝10元的价格出售.如果当天卖不完,剩下的郁金香做垃圾处理.
(1)若花店一天购进17枝郁金香,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.
(2)花店记录了100天郁金香的日需求量(单位:枝),整理得下表:

(i)假设花店在这100天内每天购进17枝郁金香,求这100天的日利润(单位:元)的平均数;
(ii)若花店一天购进17枝郁金香,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.
(1)若花店一天购进17枝郁金香,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.
(2)花店记录了100天郁金香的日需求量(单位:枝),整理得下表:

(i)假设花店在这100天内每天购进17枝郁金香,求这100天的日利润(单位:元)的平均数;
(ii)若花店一天购进17枝郁金香,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.