设随机变量ξ的分布列为P(ξ=i)=a,i=1,2,3,则a的值为
A.1B.
C.D.
当前题号:1 | 题型:单选题 | 难度:0.99
如图所示,A,B两点之间有6条网线连接,每条网线能通过的最大信息量分别为1,1,2,2,3,4,从中任取3条网线且使每条网线通过最大信息量,设这3条网线通过的最大信息量之和为ξ.

(1)当ξ≥6时,则保证线路信息畅通,求线路信息畅通的概率;
(2)求ξ的分布列.
当前题号:2 | 题型:解答题 | 难度:0.99
   甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛.若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.
(1)求甲在4局以内(含4局)赢得比赛的概率;
(2)记X为比赛决出胜负时的总局数,求X的分布列和数学期望.
当前题号:3 | 题型:解答题 | 难度:0.99
某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:
奖级
摸出红、蓝球个数
获奖金额
一等奖
3红1蓝
200元
二等奖
3红0蓝
50元
三等奖
2红1蓝
10元
 
其余情况无奖且每次摸奖最多只能获得一个奖级.
(1)求一次摸奖恰好摸到1个红球的概率;
(2)求摸奖者在一次摸奖中获奖金额X的分布列.
当前题号:4 | 题型:解答题 | 难度:0.99
某公司培训员工某项技能,培训有如下两种方式,方式一:周一到周五每天培训1小时,周日测试;方式二:周六一天培训4小时,周日测试.公司有多个班组,每个班组60人,现任选两组(记为甲组、乙组)先培训,甲组选方式一,乙组选方式二,并记录每周培训后测试达标的人数如下表,其中第一、二周达标的员工评为优秀.
 
第一周
第二周
第三周
第四周
甲组
20
25
10
5
乙组
8
16
20
16
 
(1)在甲组内任选两人,求恰有一人优秀的概率;
(2)每个员工技能测试是否达标相互独立,以频率作为概率.
(i)设公司员工在方式一、二下的受训时间分别为,求的分布列,若选平均受训时间少的,则公司应选哪种培训方式?
(ii)按(i)中所选方式从公司任选两人,求恰有一人优秀的概率.
当前题号:5 | 题型:解答题 | 难度:0.99
某工厂在两个车间内选取了12个产品,它们的某项指标分布数据的茎叶图如图所示,该项指标不超过19的为合格产品.

(1)从选取的产品中在两个车间分别随机抽取2个产品,求两车间都至少抽到一个合格产品的概率;
(2)若从车间选取的产品中随机抽取2个产品,用表示车间内产品的个数,求的分布列与数学期望.
当前题号:6 | 题型:解答题 | 难度:0.99
为创建国家级文明城市,某城市号召出租车司机在高考期间至少参加一次“爱心送考”,该城市某出租车公司共200名司机,他们参加“爱心送考”的次数统计如图所示.

(1)求该出租车公司的司机参加“爱心送考”的人均次数;
(2)从这200名司机中任选两人,设这两人参加送考次数之差的绝对值为随机变量,求的分布列及数学期望.
当前题号:7 | 题型:解答题 | 难度:0.99
已知离散型随机变量X的分布列为:
X
0
1
2
3
P



m
 
(1)求m的值;
(2)求
(3)求
当前题号:8 | 题型:解答题 | 难度:0.99
某校高二年级组织成语听说大赛,每班选10名同学参赛,要求每位同学回答5个成语,各位同学的得分总和算作本班成绩,其中一班的张明同学参赛,他每道题答对的概率均为,且每道题答对与否互不影响.计分办法规定为答对不超过3个题时,每答对一个得一分,超过三个,每多答对一个得两分.
(1)求张明至少答对三道题的概率;
(2)设张明答完5道题得分为,求的分布列及数学期望.
当前题号:9 | 题型:解答题 | 难度:0.99
已知甲、乙两名工人在同样条件下每天各生产100件产品,且每生产1件正品可获利20元,生产1件次品损失30元,甲,乙两名工人100天中出现次品件数的情况如表所示.
甲每天生产的次品数/件
0
1
2
3
4
对应的天数/天
40
20
20
10
10
 
乙每天生产的次品数/件
0
1
2
3
对应的天数/天
30
25
25
20
 
(1)将甲每天生产的次品数记为(单位:件),日利润记为(单位:元),写出的函数关系式;
(2)如果将统计的100天中产生次品量的频率作为概率,记表示甲、乙两名工人1天中各自日利润不少于1950元的人数之和,求随机变量的分布列和数学期望.
当前题号:10 | 题型:解答题 | 难度:0.99