- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- 统计案例
- 计数原理
- 概率
- + 随机变量及其分布
- 离散型随机变量及其分布列
- 二项分布及其应用
- 离散型随机变量的均值与方差
- 正态分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:

(1)设
表示在这块地上种植1季此作物的利润,求
的分布列;
(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.

(1)设


(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.
某工厂的某种产品成箱包装,每箱
件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取
件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为
,且各件产品是否为不合格品相互独立.
(1)记
件产品中恰有
件不合格品的概率为
,求
的最大值点
;
(2)现对一箱产品检验了
件,结果恰有
件不合格品,以(1)中确定的
作为
的值.已知每件产品的检验费用为
元,若有不合格品进入用户手中,则工厂要对每件不合格品支付
元的赔偿费用.
(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为
,求
;
(ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?



(1)记





(2)现对一箱产品检验了






(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为


(ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?
扬州大学数学系有6名大学生要去甲、乙两所中学实习,每名大学生都被随机分配到两所中学的其中一所.
(1)求6名大学生中至少有1名被分配到甲学校实习的概率;
(2)设
,
分别表示分配到甲、乙两所中学的大学生人数,记
,求随机变量
的分布列和数学期望.
(1)求6名大学生中至少有1名被分配到甲学校实习的概率;
(2)设




已知知正四棱锥S-ABCD的底面边长和高均为2,从其五个顶点中任取三个,记这三个顶点围成的三角形的面积为
.
(1)求概率P(
=2);
(2)求
的分布列和数学期望.

(1)求概率P(

(2)求

如图是一旅游景区供游客行走的路线图,假设从进口
开始到出口
,每遇到一个岔路口,每位游客选择其中一条道路行进是等可能的.现有甲、乙、丙、丁共
名游客结伴到旅游景区游玩,他们从进口
的岔路口就开始选择道路自行游玩,并按箭头所指路线行走,最后到出口
集中,设点
是其中的一个交叉路口点.
(1)求甲经过点
的概率;
(2)设这
名游客中恰有
名游客都是经过点
,求随机变量
的概率分布和数学期望.






(1)求甲经过点

(2)设这





某公司有
四辆汽车,其中
车的车牌尾号为0,
两辆车的车牌尾号为6,
车的车牌尾号为5,已知在非限行日,每辆车都有可能出车或不出车.已知
两辆汽车每天出车的概率为
,
两辆汽车每天出车的概率为
,且四辆汽车是否出车是相互独立的.
该公司所在地区汽车限行规定如下:

(1)求该公司在星期四至少有2辆汽车出车的概率;
(2)设
表示该公司在星期一和星期二两天出车的车辆数之和,求
的分布列和数学期望.








该公司所在地区汽车限行规定如下:

(1)求该公司在星期四至少有2辆汽车出车的概率;
(2)设


某公司的一次招聘中,应聘者都要经过三个独立项目
,
,
的测试,如果通过两个或三个项目的测试即可被录用.若甲、乙、丙三人通过
,
,
每个项目测试的概率都是
.
(1)求甲恰好通过两个项目测试的概率;
(2)设甲、乙、丙三人中被录用的人数为
,求
的概率分布和数学期望.







(1)求甲恰好通过两个项目测试的概率;
(2)设甲、乙、丙三人中被录用的人数为


甲、乙、丙三位学生各自独立地解同一道题,已知甲做对该题的概率为
,乙、丙做对该题的概率分别为
,且三位学生能否做对相互独立,设
为这三位学生中做对该题的人数,其分布列为:



![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() |
(1)求的值;
(2)求的数学期望.