- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- 统计案例
- 计数原理
- 概率
- + 随机变量及其分布
- 离散型随机变量及其分布列
- 二项分布及其应用
- 离散型随机变量的均值与方差
- 正态分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“数到的2个数均为偶数”,则
( )

A.![]() | B.![]() | C.![]() | D.![]() |
某射手射击一次击中靶心的概率是
,如果他在同样的条件下连续射击10次,设射手击中靶心的次数为
,若
,
,则
( )





A.0.7 | B.0.6 | C.0.4 | D.0.3 |
甲、乙、丙、丁、戊5名同学报名参加社区服务活动,社区服务活动共有关爱老人、环境监测、教育咨询、交通宣传、文娱活动五个项目,每人限报其中一项,记事件
为“5名同学所报项目各不相同”,事件
为“只有甲同学一人报关爱老人项目”,则
( )



A.![]() | B.![]() | C.![]() | D.![]() |
某大型工厂有
台大型机器,在
个月中,
台机器至多出现
次故障,且每台机器是否出现故障是相互独立的,出现故障时需
名工人进行维修.每台机器出现故障的概率为
.已知
名工人每月只有维修
台机器的能力,每台机器不出现故障或出现故障时有工人维修,就能使该厂获得
万元的利润,否则将亏损
万元.该工厂每月需支付给每名维修工人
万元的工资.
(1)若每台机器在当月不出现故障或出现故障时有工人进行维修,则称工厂能正常运行.若该厂只有
名维修工人,求工厂每月能正常运行的概率;
(2)已知该厂现有
名维修工人.
(ⅰ)记该厂每月获利为
万元,求
的分布列与数学期望;
(ⅱ)以工厂每月获利的数学期望为决策依据,试问该厂是否应再招聘
名维修工人?











(1)若每台机器在当月不出现故障或出现故障时有工人进行维修,则称工厂能正常运行.若该厂只有

(2)已知该厂现有

(ⅰ)记该厂每月获利为


(ⅱ)以工厂每月获利的数学期望为决策依据,试问该厂是否应再招聘
