- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- 统计案例
- 计数原理
- + 概率
- 随机事件的概率
- 古典概型
- 几何概型
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
将编号为1,2,3,4的4个小球随机放到A、B、C三个不同的小盒中,每个小盒至少放一个小球.
(Ⅰ)求编号为1, 2的小球同时放到A盒的概率;
(Ⅱ)设随机变量
为放入A盒的小球的个数,求
的分布列与数学期望.
(Ⅰ)求编号为1, 2的小球同时放到A盒的概率;
(Ⅱ)设随机变量


(本小题满分13分)
城市公交车的数量若太多则容易造成资源的浪费;若太少又难以满足乘客需求。某市公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间作为样本分成5组,如下表所示(单位:分钟).
(Ⅰ)估计这60名乘客中候车时间少于10分钟的人数;
(Ⅱ)若从上表第三、四组的6人中任选2人作进一步的调查.
①列出所有可能的结果;
②求抽到的两人恰好来自不同组的概率.
城市公交车的数量若太多则容易造成资源的浪费;若太少又难以满足乘客需求。某市公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间作为样本分成5组,如下表所示(单位:分钟).
组别 | 一 | 二 | 三 | 四 | 五 |
候车时间 | [0,5) | [5,10) | [10,15) | [15,20) | [20,25] |
人数 | 2 | 6 | 4 | 2 | l |
(Ⅱ)若从上表第三、四组的6人中任选2人作进一步的调查.
①列出所有可能的结果;
②求抽到的两人恰好来自不同组的概率.
一个袋子中装有大小形状完全相同的编号分别为
的
个红球与编号为
的
个白球,从中任意取出
个球.
(Ⅰ)求取出的
个球颜色相同且编号是三个连续整数的概率;
(Ⅱ)记
为取出的
个球中编号的最大值,求
的分布列与数学期望.





(Ⅰ)求取出的

(Ⅱ)记



甲、乙两人参加某种选拔测试.在备选的
道题中,甲答对其中每道题的概率都是
,乙能答对其中的
道题.规定每次考试都从备选的
道题中随机抽出
道题进行测试,答对一题加
分,答错一题(不答视为答错)减
分,至少得
分才能入选.
(Ⅰ)求乙的得分
的分布列和数学期望
;
(Ⅱ)求甲、乙两人中至少有一人入选的概率.








(Ⅰ)求乙的得分


(Ⅱ)求甲、乙两人中至少有一人入选的概率.
西安市某中学在每年的11月份都会举行“文化艺术节”,开幕式当天组织举行大型的文艺表演,同时邀请36名不同社团的社长进行才艺展示.其中有
的社长是高中学生,
的社长是初中学生,高中社长中有
是高一学生,初中社长中有
是初二学生.
(Ⅰ)若校园电视台记者随机采访3位社长,求恰有1人是高一学生且至少有1人是初中学生的概率;
(Ⅱ)若校园电视台记者随机采访3位初中学生社长,设初二学生人数为
,求
的分布列及数学期望
.




(Ⅰ)若校园电视台记者随机采访3位社长,求恰有1人是高一学生且至少有1人是初中学生的概率;
(Ⅱ)若校园电视台记者随机采访3位初中学生社长,设初二学生人数为



甲、乙两名教师进行乒乓球比赛,采用七局四胜制(先胜四局者获胜).若每一局比赛甲获胜的概率为
,乙获胜的概率为
,现已赛完两局,乙暂时以2∶0领先.
(1)求甲获得这次比赛胜利的概率;
(2)设比赛结束时比赛的局数为随机变量X,求随机变量X的概率分布和数学期望EX.


(1)求甲获得这次比赛胜利的概率;
(2)设比赛结束时比赛的局数为随机变量X,求随机变量X的概率分布和数学期望EX.
(本小题满分12分)某校进行教工趣味运动会,其中一项目是投篮比赛,规则是:每位教师投二分球四次,投中三个可以再投三分球一次,投中四个可以再投三分球三次,投中球数小于3则没有机会投三分球,所有参加的老师都可以获得一个小奖品,每投中一个三分球可以再获得一个小奖品。某位教师二分球的命中率是
,三分球的命中率是
.
(Ⅰ)求该教师恰好投中四个球的概率;
(Ⅱ)记该教师获得奖品数为
,求随机变量
的分布列和数学期望.


(Ⅰ)求该教师恰好投中四个球的概率;
(Ⅱ)记该教师获得奖品数为


某区体育局组织篮球技能大赛,每名选手都要进行运球、传球、投篮三项比赛,每名选手在各项比赛中获得合格与不合格的机会相等,且互不影响.现有
六名选手参加比赛,体育局根据比赛成绩对前
名选手进行表彰奖励.
(1)求
至少获得一个合格的概率;
(2)求
与
只有一个受到表彰奖励的概率.


(1)求

(2)求

