- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 全排列问题
- 元素(位置)有限制的排列问题
- 相邻问题的排列问题
- 不相邻排列问题
- + 其他排列模型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
现有4名男生、3名女生站成一排照相.(结果用数字表示)
(1)女生甲不在排头,女生乙不在排尾,有多少种不同的站法?
(2)女生不相邻,有多少种不同的站法?
(3)女生甲要在女生乙的右方,有多少种不同的站法?
(1)女生甲不在排头,女生乙不在排尾,有多少种不同的站法?
(2)女生不相邻,有多少种不同的站法?
(3)女生甲要在女生乙的右方,有多少种不同的站法?
已知圆的方程
,从0,3,4,5,6,7,8,9,10这九个数中选出3个不同的数,分别作圆心的横坐标、纵坐标和圆的半径.问:
(1)可以作多少个不同的圆?
(2)经过原点的圆有多少个?
(3)圆心在直线上
的圆有多少个?

(1)可以作多少个不同的圆?
(2)经过原点的圆有多少个?
(3)圆心在直线上

有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数.
(1)全体排成一行,其中男生必须排在一起;
(2)全体排成一行,男、女各不相邻;
(3)全体排成一行,其中甲不在最左边,乙不在最右边;
(4)全体排成一行,其中甲、乙、丙三人从左至右的顺序不变.
(1)全体排成一行,其中男生必须排在一起;
(2)全体排成一行,男、女各不相邻;
(3)全体排成一行,其中甲不在最左边,乙不在最右边;
(4)全体排成一行,其中甲、乙、丙三人从左至右的顺序不变.
甲乙丙丁戊五人并排站成一排,如果乙必须站在甲的右边(甲乙可以不相邻),那么不同的排法共有( )种.
A.120 | B.60 | C.50 | D.30 |
从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lga﹣lgb的不同值的个数是()
A.9 | B.10 | C.18 | D.20 |