- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 分类加法计数原理
- 两个计数原理的综合应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
小李打算从10位朋友中邀请4位去旅游,这10位朋友中有一对是双胞胎,对于这对双胞胎,要么都邀请,要么都不邀请,则不同的邀请方法有______种.
有A、B、C、D、E五列火车停在某车站并行的5条火车轨道上.如果快车A不能停在第3道上,慢车B不能停在第1道上,那么这五列火车的停车方法共有________种(用数字作答);
将
个不同的红球和
个不同的白球,放入同一个袋中,现从中取出
个球.
(1)若取出的红球的个数不少于白球的个数,则有多少种不同的取法;
(2)取出一个红球记
分,取出一个白球记
分,若取出
个球的总分不少于
分,则有多少种不同的取法;
(3)若将取出的
个球放入一箱子中,记“从箱子中任意取出
个球,然后放回箱子中”为一次操作,如果操作三次,求恰有一次取到
个红球并且恰有一次取到
个白球的概率.



(1)若取出的红球的个数不少于白球的个数,则有多少种不同的取法;
(2)取出一个红球记




(3)若将取出的




小王有70元钱,现有面值分别为20元和30元的两种IC电话卡.若他至少买一张,则不同的买法共有( )
A.7种 | B.8种 |
C.6种 | D.9种 |
用0,1,2,3,4这五个数字组成无重复数字的自然数.
(Ⅰ)在组成的三位数中,求所有偶数的个数;
(Ⅱ)在组成的三位数中,如果十位上的数字比百位上的数字和个位上的数字都小,则称这个数为“凹数”,如301,423等都是“凹数”,试求“凹数”的个数;
(Ⅲ)在组成的五位数中,求恰有一个偶数数字夹在两个奇数数字之间的自然数的个数.
(Ⅰ)在组成的三位数中,求所有偶数的个数;
(Ⅱ)在组成的三位数中,如果十位上的数字比百位上的数字和个位上的数字都小,则称这个数为“凹数”,如301,423等都是“凹数”,试求“凹数”的个数;
(Ⅲ)在组成的五位数中,求恰有一个偶数数字夹在两个奇数数字之间的自然数的个数.
从5名志愿者中选出4人分别到
、
、
、
四个部门工作,其中甲、乙两名志愿者不能到
、
二个部门工作,其他三人能到四个部门工作,则选派方案共有( )






A.120种 | B.24种 | C.18种 | D.36种 |
在上海高考改革方案中,要求每位高中生必须在物理、化学、生物、政治、历史、地理6门学科(3门理科,3门文科)中选择3门学科参加等级考试,小李同学受理想中的大学专业所限,决定至少选择一门理科学科,那么小李同学的选科方案有________种.
4个不同的红球和6个不同的白球放入同一个袋中,现从中取出4个球.
(1)若取出的红球的个数不少于白球的个数,则有多少不同的取法?
(2)取出一个红球记2分,取出一个白球记1分,若取出4个球所得总分不少于5分,则有多少种不同取法.
(1)若取出的红球的个数不少于白球的个数,则有多少不同的取法?
(2)取出一个红球记2分,取出一个白球记1分,若取出4个球所得总分不少于5分,则有多少种不同取法.
现某学校共有34人自愿组成数学建模社团,其中高一年级13人,高二年级12人,高三年级9人.
(1)选其中一人为负责人,共有多少种不同的选法?
(2)每个年级选一名组长,有多少种不同的选法?
(3)选两人作为社团发言人,这两人需要来自不同的年级,有多少种不同的选法?
(1)选其中一人为负责人,共有多少种不同的选法?
(2)每个年级选一名组长,有多少种不同的选法?
(3)选两人作为社团发言人,这两人需要来自不同的年级,有多少种不同的选法?