- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 分类加法计数原理
- 两个计数原理的综合应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
甲,乙,丙,丁四名同学做传递手帕游戏(每位同学传递到另一位同学记传递1次),手帕从甲手中开始传递,经过5次传递后手帕回到甲手中,则共有__________种不同的传递方法.(用数字作答)
(1)有4个袋子,分别装有不同编号的黑色小球5个、红色小球4个、白色小球6个、黄色小球5个.若从4个袋子中任取1个小球,有多少种不同的取法?
(2)有一数学问题可用综合法和分析法两种方法证明,有5名同学只会用综合法证明,有3名同学只会用分析法证明,现从这些同学中任选1名同学证明这个问题,有多少种不同的选法?
(2)有一数学问题可用综合法和分析法两种方法证明,有5名同学只会用综合法证明,有3名同学只会用分析法证明,现从这些同学中任选1名同学证明这个问题,有多少种不同的选法?
一个口袋里有4个不同的红球,6个不同的白球(球的大小均一样)
(1)从中任取3个球,恰好为同色球的不同取法有多少种?
(2)取得一个红球记为2分,一个白球记为1分.从口袋中取出五个球,使总分不小于7分的不同取法共有多少种?
(1)从中任取3个球,恰好为同色球的不同取法有多少种?
(2)取得一个红球记为2分,一个白球记为1分.从口袋中取出五个球,使总分不小于7分的不同取法共有多少种?
将三个分别标有A,B,C的小球随机地放入编号为1,2,3,4的四个盒子中,则第1号盒子有球的不同放法的总数为_______(用数字作答)
有4人各拿一只水杯去接水,设水龙头注满每个人的水杯分别需要9s,7s,6s,8s,每个人接完水后就离开,则他们总的等候时间(所有人的等候时间的和)最短为: .